1997 Calculus AB Solutions: Part A

1. C
$$\int_{1}^{2} (4x^{3} - 6x) dx = (x^{4} - 3x^{2}) \Big|_{1}^{2} = (16 - 12) - (1 - 3) = 6$$

2. A
$$f(x) = x(2x-3)^{\frac{1}{2}}$$
; $f'(x) = (2x-3)^{\frac{1}{2}} + x(2x-3)^{-\frac{1}{2}} = (2x-3)^{-\frac{1}{2}}(3x-3) = \frac{(3x-3)^{\frac{1}{2}}}{\sqrt{2x-3}}$

3. C
$$\int_{a}^{b} (f(x)+5) dx = \int_{a}^{b} f(x) dx + 5 \int_{a}^{b} 1 dx = a + 2b + 5(b-a) = 7b - 4a$$

4. D
$$f(x) = -x^3 + x + \frac{1}{x}$$
; $f'(x) = -3x^2 + 1 - \frac{1}{x^2}$; $f'(-1) = -3(-1)^2 + 1 - \frac{1}{(-1)^2} = -3 + 1 - 1 = -3$

5. E
$$y = 3x^4 - 16x^3 + 24x^2 + 48$$
; $y' = 12x^3 - 48x^2 + 48x$; $y'' = 36x^2 - 96x + 48 = 12(3x - 2)(x - 2)$
 $y'' < 0$ for $\frac{2}{3} < x < 2$, therefore the graph is concave down for $\frac{2}{3} < x < 2$

6.
$$C \qquad \frac{1}{2} \int e^{\frac{t}{2}} dt = e^{\frac{t}{2}} + C$$

7. D
$$\frac{d}{dx}\cos^{2}(x^{3}) = 2\cos(x^{3})\left(\frac{d}{dx}(\cos(x^{3}))\right) = 2\cos(x^{3})(-\sin(x^{3}))\left(\frac{d}{dx}(x^{3})\right)$$
$$= 2\cos(x^{3})(-\sin(x^{3}))(3x^{2})$$

- 8. C The bug change direction when v changes sign. This happens at t = 6.
- 9. B Let A_1 be the area between the graph and t-axis for $0 \le t \le 6$, and let A_2 be the area between the graph and the t-axis for $6 \le t \le 8$ Then $A_1 = 12$ and $A_2 = 1$. The total distance is $A_1 + A_2 = 13$.

10. E
$$y = \cos(2x)$$
; $y' = -2\sin(2x)$; $y'\left(\frac{\pi}{4}\right) = -2$ and $y\left(\frac{\pi}{4}\right) = 0$; $y = -2\left(x - \frac{\pi}{4}\right)$

- 11. E Since f' is positive for -2 < x < 2 and negative for x < -2 and for x > 2, we are looking for a graph that is increasing for -2 < x < 2 and decreasing otherwise. Only option E.
- 12. B $y = \frac{1}{2}x^2$; y' = x; We want $y' = \frac{1}{2} \implies x = \frac{1}{2}$. So the point is $(\frac{1}{2}, \frac{1}{8})$.

1997 Calculus AB Solutions: Part A

- 13. A $f'(x) = \frac{\left|4 x^2\right|}{x 2}$; f is decreasing when f' < 0. Since the numerator is non-negative, this is only when the denominator is negative. Only when x < 2.
- 14. C $f(x) \approx L(x) = 2 + 5(x 3)$; L(x) = 0 if $0 = 5x 13 \implies x = 2.6$
- 15. B Statement B is true because $\lim_{x \to a^{-}} f(x) = 2 = \lim_{x \to a^{+}} f(x)$. Also, $\lim_{x \to b} f(x)$ does not exist because the left- and right-sided limits are not equal, so neither (A), (C), nor (D) are true.
- 16. D The area of the region is given by $\int_{-2}^{2} (5 (x^2 + 1)) dx = 2(4x \frac{1}{3}x^3) \Big|_{0}^{2} = 2\left(8 \frac{8}{3}\right) = \frac{32}{3}$
- 17. A $x^2 + y^2 = 25$; $2x + 2y \cdot y' = 0$; $x + y \cdot y' = 0$; $y'(4,3) = -\frac{4}{3}$; $x + y \cdot y' = 0 \implies 1 + y \cdot y'' + y' \cdot y' = 0$; $1 + (3)y'' + \left(-\frac{4}{3}\right) \cdot \left(-\frac{4}{3}\right) = 0$; $y'' = -\frac{25}{27}$
- 18. C $\int_{0}^{\frac{\pi}{4}} \frac{e^{\tan x}}{\cos^{2} x} dx \text{ is of the form } \int e^{u} du \text{ where } u = \tan x..$ $\int_{0}^{\frac{\pi}{4}} \frac{e^{\tan x}}{\cos^{2} x} dx = e^{\tan x} \Big|_{0}^{\frac{\pi}{4}} = e^{1} e^{0} = e 1$
- 19. D $f(x) = \ln |x^2 1|$; $f'(x) = \frac{1}{x^2 1} \cdot \frac{d}{dx} (x^2 1) = \frac{2x}{x^2 1}$
- 20. E $\frac{1}{8} \int_{-3}^{5} \cos x \, dx = \frac{1}{8} (\sin 5 \sin(-3)) = \frac{1}{8} (\sin 5 + \sin 3)$; Note: Since the sine is an odd function, $\sin(-3) = -\sin(3)$.
- 21. E $\lim_{x\to 1} \frac{x}{\ln x}$ is nonexistent since $\lim_{x\to 1} \ln x = 0$ and $\lim_{x\to 1} x \neq 0$.
- 22. D $f(x) = (x^2 3)e^{-x}$; $f'(x) = e^{-x}(-x^2 + 2x + 3) = -e^{-x}(x 3)(x + 1)$; f'(x) > 0 for -1 < x < 3
- 23. A Disks where r = x. $V = \pi \int_0^2 x^2 dy = \pi \int_0^2 y^4 dy = \frac{\pi}{5} y^5 \Big|_0^2 = \frac{32\pi}{5}$

1997 Calculus AB Solutions: Part A

- 24. B Let [0,1] be divided into 50 subintervals. $\Delta x = \frac{1}{50}$; $x_1 = \frac{1}{50}$, $x_2 = \frac{2}{50}$, $x_3 = \frac{3}{50}$, ..., $x_{50} = 1$ Using $f(x) = \sqrt{x}$, the right Riemann sum $\sum_{i=1}^{50} f(x_i) \Delta x$ is an approximation for $\int_0^1 \sqrt{x} \, dx$.
- 25. A Use the technique of antiderivatives by parts, which was removed from the AB Course Description in 1998.

$$u = x$$
 $dv = \sin 2x dx$
 $du = dx$ $v = -\frac{1}{2}\cos 2x$

$$\int x \sin(2x) \, dx = -\frac{1}{2} x \cos(2x) + \int \frac{1}{2} \cos(2x) \, dx = -\frac{1}{2} x \cos(2x) + \frac{1}{4} \sin(2x) + C$$

1997 Calculus AB Solutions: Part B

76. E
$$f(x) = \frac{e^{2x}}{2x}$$
; $f'(x) = \frac{2e^{2x} \cdot 2x - 2e^{2x}}{4x^2} = \frac{e^{2x}(2x - 1)}{2x^2}$

- 77. D $y = x^3 + 6x^2 + 7x 2\cos x$. Look at the graph of $y'' = 6x + 12 + 2\cos x$ in the window [-3,-1] since that domain contains all the option values. y'' changes sign at x = -1.89.
- 78. D $F(3) F(0) = \int_0^3 f(x) dx = \int_0^1 f(x) dx + \int_1^3 f(x) dx = 2 + 2.3 = 4.3$ (Count squares for $\int_0^1 f(x) dx$)
- 79. C The stem of the questions means f'(2) = 5. Thus f is differentiable at x = 2 and therefore continuous at x = 2. We know nothing of the continuity of f'. I and II only.
- 80. A $f(x) = 2e^{4x^2}$; $f'(x) = 16xe^{4x^2}$; We want $16xe^{4x^2} = 3$. Graph the derivative function and the function y = 3, then find the intersection to get x = 0.168.
- 81. A Let x be the distance of the train from the crossing. Then $\frac{dx}{dt} = 60$. $S^2 = x^2 + 70^2 \Rightarrow 2S \frac{dS}{dt} = 2x \frac{dx}{dt} \Rightarrow \frac{dS}{dt} = \frac{x}{S} \frac{dx}{dt}.$ After 4 seconds, x = 240 and so S = 250.

 Therefore $\frac{dS}{dt} = \frac{240}{250}(60) = 57.6$

- 82. B $P(x) = 2x^2 8x$; P'(x) = 4x 8; P' changes from negative to positive at x = 2. P(2) = -8
- 83. C $\cos x = x$ at x = 0.739085. Store this in A. $\int_0^A (\cos x x) dx = 0.400$
- 84. C Cross sections are squares with sides of length y. Volume = $\int_1^e y^2 dx = \int_1^e \ln x \, dx = (x \ln x - x) \Big|_1^e = (e \ln e - e) - (0 - 1) = 1$
- 85. C Look at the graph of f' and locate where the y changes from positive to negative. x = 0.91
- 86. A $f(x) = \sqrt{x}$; $f'(x) = \frac{1}{2\sqrt{x}}$; $\frac{1}{2\sqrt{c}} = 2 \cdot \frac{1}{2\sqrt{1}} \implies c = \frac{1}{4}$

1997 Calculus AB Solutions: Part B

87. B
$$a(t) = t + \sin t$$
 and $v(0) = -2 \implies v(t) = \frac{1}{2}t^2 - \cos t - 1$; $v(t) = 0$ at $t = 1.48$

88. E $f(x) = \int_a^x h(x) dx \Rightarrow f(a) = 0$, therefore only (A) or (E) are possible. But f'(x) = h(x) and therefore f is differentiable at x = b. This is true for the graph in option (E) but not in option (A) where there appears to be a corner in the graph at x = b. Also, Since h is increasing at first, the graph of f must start out concave up. This is also true in (E) but not (A).

89. B
$$T = \frac{1}{2} \cdot \frac{1}{2} (3 + 2 \cdot 3 + 2 \cdot 5 + 2 \cdot 8 + 13) = 12$$

90. D
$$F(x) = \frac{1}{2}\sin^2 x$$
 $F'(x) = \sin x \cos x$ Yes $F(x) = \frac{1}{2}\cos^2 x$ $F'(x) = -\cos x \sin x$ No $F(x) = -\frac{1}{4}\cos(2x)$ $F'(x) = \frac{1}{2}\sin(2x) = \sin x \cos x$ Yes