

1. People enter a line for an escalator at a rate modeled by the function r given by

$$
r(t)= \begin{cases}44\left(\frac{t}{100}\right)^{3}\left(1-\frac{t}{300}\right)^{7} & \text { for } 0 \leq t \leq 300 \\ 0 & \text { for } t>300\end{cases}
$$

where $r(t)$ is measured in people per second and t is measured in seconds. As people get on the escalator, they exit the line at a constant rate of 0.7 person per second. There are 20 people in line at time $t=0$.
(a) How many people enter the line for the escalator during the time interval $0 \leq t \leq 300$?

$$
\int_{0}^{300} 44\left(\frac{t}{100}\right)^{3}\left(1-\frac{t}{300}\right)^{7} d t=270
$$

(b) During the time interval $0 \leq t \leq 300$, there are always people in line for the escalator. How many people are in line at time $t=300$?

$$
\begin{aligned}
& .7(300)=210 \\
& 20+270=290
\end{aligned}
$$

$$
290-210=80
$$

(c) For $t>300$, what is the first time t that there are no people in line for the escalator?

$$
\begin{aligned}
(t-300)(.7)-80 & =0 \\
.7 t-210-80 & =0 \\
.7 t & +290 \\
t & =414.2865
\end{aligned}
$$

(d) For $0 \leq t \leq 300$, at what time t is the number of people in line a minimum? To the nearest whole number, find the number of people in line at this time. Justify your answer.

$$
\begin{aligned}
& p=\text { total people } \quad \frac{d p}{d t}=r(t)-.7 \\
& 0=r(t)-.7 \\
& t=166.575 \\
& t=33.013 \\
& p(t)=\int_{0}^{t} r(x)-.7 d x+20
\end{aligned}
$$

