6. Consider the differential equation $\frac{d y}{d x}=\frac{1}{3} x(y-2)^{2}$.
(a) A slope field for the given differential equation is shown below. Sketch the solution curve that passes through the point $(0,2)$, and sketch the solution curve that passes through the point $(1,0)$.

(b) Let $y=f(x)$ be the particular solution to the given differential equation with initial condition $f(1)=0$. Write an equation for the line tangent to the graph of $y=f(x)$ at $x=1$. Use your equation to approximate $f(0.7)$.

$$
\begin{array}{rlrl}
y & =m_{T}(x-1)+0 & m_{T} & =\frac{1}{3} \cdot 1(0-2)^{2} \\
y & =4 / 3(x-1) & & =\frac{1}{3}(4) \\
f(0.7) & \approx 4 / 3(0.7-1) & & =4 / 3 \\
& \approx 4 / 3\left(-\frac{3}{10}\right) \\
& \approx-4 / 10=-2 / 5
\end{array}
$$

NO CALCULATOR ALLOWED
(c) Find the particular solution $y=f(x)$ to the given differential equation with initial condition $f(1)=0$.

$$
\begin{aligned}
& u=y-2 \\
& d u=d y
\end{aligned}
$$

$$
\int \frac{d y}{(y-2)^{2}}=\int \frac{1}{3} x d x
$$

$$
\begin{aligned}
& \int \frac{d u}{u^{2}}=\frac{1}{3} \int x d x \\
& -\frac{1}{u}=\frac{1}{3}\left(\frac{x^{2}}{2}\right)+C \\
& \frac{1}{(y-2)}=\frac{x^{2}}{6}+C
\end{aligned}
$$

point: $x=1$

$$
y=0
$$

$$
C=\frac{1}{2}-1 / 6=3 / 6-1 / 6=2 / 6=1 / 3
$$

$$
\begin{aligned}
\therefore \quad \frac{-1}{y-2} & =\frac{x^{2}}{6}+1 / 3 \\
\frac{1}{y-2} & =\frac{-x^{2}}{6}-1 / 3
\end{aligned}
$$

$$
\begin{aligned}
& y-2=\left(\frac{1}{-\frac{x^{2}}{6}-\frac{2}{6}}\right. \\
& y-2=\frac{6}{-\left(x^{2}+2\right)}
\end{aligned}
$$

$$
y=\frac{6}{-\left(x^{2}+2\right)}+2
$$

