AP[°]

AP[®] Calculus AB 2016 Scoring Guidelines

© 2016 The College Board. College Board, Advanced Placement Program, AP, AP Central, and the acorn logo are registered trademarks of the College Board.

Visit the College Board on the Web: www.collegeboard.org.

AP Central is the official online home for the AP Program: apcentral.collegeboard.org.

AP® CALCULUS AB/CALCULUS BC 2016 SCORING GUIDELINES

Question 1

t (hours)	0	1	3	6	8
$\frac{R(t)}{(\text{liters / hour})}$	1340	1190	950	740	700

Water is pumped into a tank at a rate modeled by $W(t) = 2000e^{-t^2/20}$ liters per hour for $0 \le t \le 8$, where t is measured in hours. Water is removed from the tank at a rate modeled by R(t) liters per hour, where R is differentiable and decreasing on $0 \le t \le 8$. Selected values of R(t) are shown in the table above. At time t = 0, there are 50,000 liters of water in the tank.

- (a) Estimate R'(2). Show the work that leads to your answer. Indicate units of measure.
- (b) Use a left Riemann sum with the four subintervals indicated by the table to estimate the total amount of water removed from the tank during the 8 hours. Is this an overestimate or an underestimate of the total amount of water removed? Give a reason for your answer.
- (c) Use your answer from part (b) to find an estimate of the total amount of water in the tank, to the nearest liter, at the end of 8 hours.
- (d) For $0 \le t \le 8$, is there a time t when the rate at which water is pumped into the tank is the same as the rate at which water is removed from the tank? Explain why or why not.

(a)	$R'(2) \approx \frac{R(3) - R(1)}{3 - 1} = \frac{950 - 1190}{3 - 1} = -120$ liters/hr ²	2 : $\begin{cases} 1 : \text{estimate} \\ 1 : \text{units} \end{cases}$
(b)	The total amount of water removed is given by $\int_0^8 R(t) dt$. $\int_0^8 R(t) dt \approx 1 \cdot R(0) + 2 \cdot R(1) + 3 \cdot R(3) + 2 \cdot R(6)$ = 1(1340) + 2(1190) + 3(950) + 2(740) = 8050 liters	3 :
	This is an overestimate since R is a decreasing function.	
(c)	Total $\approx 50000 + \int_0^8 W(t) dt - 8050$ = 50000 + 7836.195325 - 8050 \approx 49786 liters	2 : $\begin{cases} 1 : integral \\ 1 : estimate \end{cases}$
(d)	W(0) - R(0) > 0, $W(8) - R(8) < 0$, and $W(t) - R(t)$ is continuous.	2 : $\begin{cases} 1 : \text{ considers } W(t) - R(t) \\ 1 : \text{ answer with explanation} \end{cases}$
	Therefore, the Intermediate Value Theorem guarantees at least one time t , $0 < t < 8$, for which $W(t) - R(t) = 0$, or $W(t) = R(t)$.	
	For this value of <i>t</i> , the rate at which water is pumped into the tank is the same as the rate at which water is removed from the tank.	
	© 2016 The College Board. Visit the College Board on the Web: www.colleg	eboard.org.

AP[®] CALCULUS AB 2016 SCORING GUIDELINES

Question 2

For $t \ge 0$, a particle moves along the *x*-axis. The velocity of the particle at time t is given by

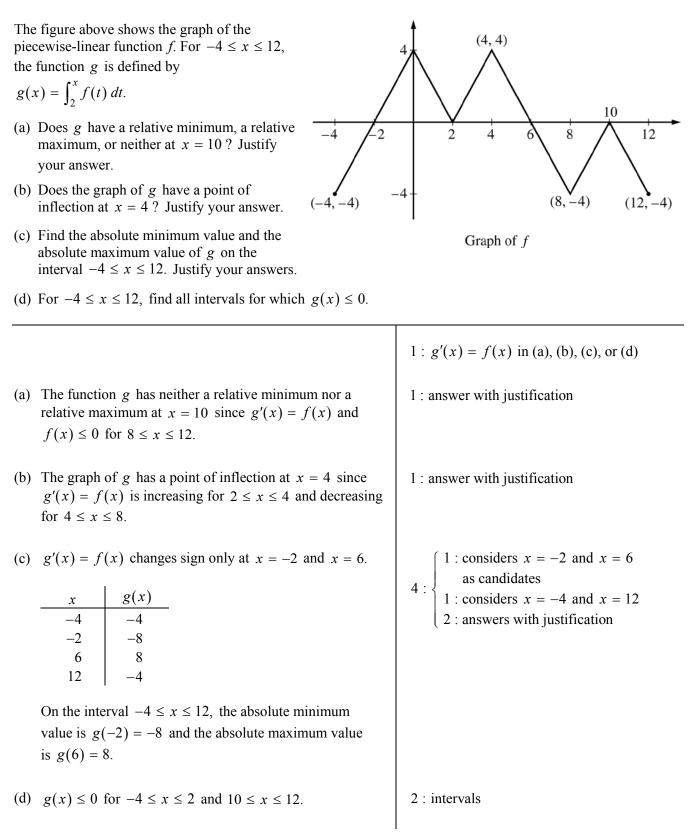
 $v(t) = 1 + 2\sin\left(\frac{t^2}{2}\right)$. The particle is at position x = 2 at time t = 4.

- (a) At time t = 4, is the particle speeding up or slowing down?
- (b) Find all times t in the interval 0 < t < 3 when the particle changes direction. Justify your answer.
- (c) Find the position of the particle at time t = 0.
- (d) Find the total distance the particle travels from time t = 0 to time t = 3.

(a)	v(4) = 2.978716 > 0 v'(4) = -1.164000 < 0	2 : conclusion with reason
	The particle is slowing down since the velocity and acceleration have different signs.	
(b)	$v(t) = 0 \implies t = 2.707468$	$2: \begin{cases} 1: t = 2.707\\ 1: \text{ justification} \end{cases}$
	v(t) changes from positive to negative at $t = 2.707$. Therefore, the particle changes direction at this time.	(1) Justification
(c)	$x(0) = x(4) + \int_{4}^{0} v(t) dt$ = 2 + (-5.815027) = -3.815	3 :
(d)	Distance $= \int_0^3 v(t) dt = 5.301$	2 : $\begin{cases} 1 : integral \\ 1 : answer \end{cases}$

AP[®] CALCULUS AB/CALCULUS BC 2016 SCORING GUIDELINES

Question 3

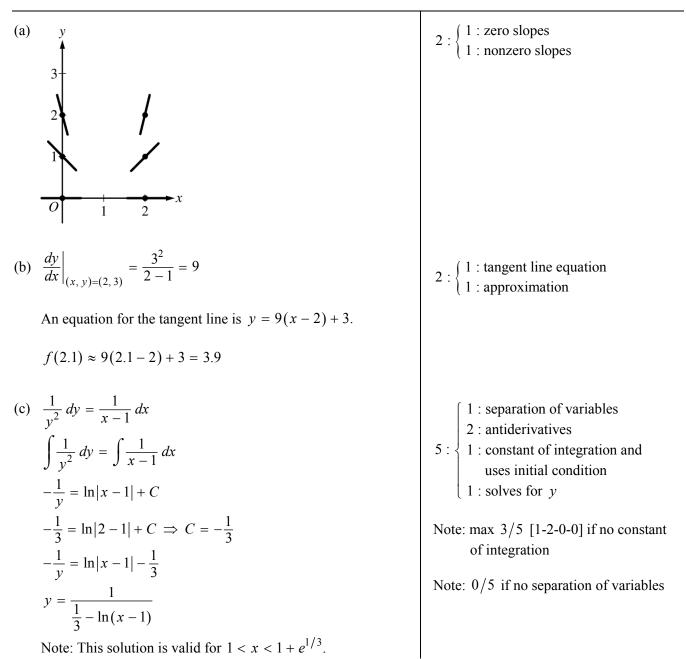


AP[®] CALCULUS AB 2016 SCORING GUIDELINES

Question 4

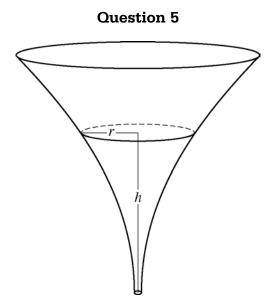
Consider the differential equation $\frac{dy}{dx} = \frac{y^2}{x-1}$.

- (a) On the axes provided, sketch a slope field for the given differential equation at the six points indicated.
- (b) Let y = f(x) be the particular solution to the given differential equation with the initial condition f(2) = 3. Write an equation for the line tangent to the graph of y = f(x) at x = 2. Use your equation to approximate f(2.1).
- (c) Find the particular solution y = f(x) to the given differential equation with the initial condition f(2) = 3.



© 2016 The College Board. Visit the College Board on the Web: www.collegeboard.org

AP[®] CALCULUS AB/CALCULUS BC 2016 SCORING GUIDELINES



The inside of a funnel of height 10 inches has circular cross sections, as shown in the figure above. At height h, the radius of the funnel is given by $r = \frac{1}{20}(3+h^2)$, where $0 \le h \le 10$. The units of r and h are inches.

- (a) Find the average value of the radius of the funnel.
- (b) Find the volume of the funnel.
- (c) The funnel contains liquid that is draining from the bottom. At the instant when the height of the liquid is h = 3 inches, the radius of the surface of the liquid is decreasing at a rate of $\frac{1}{5}$ inch per second. At this instant, what is the rate of change of the height of the liquid with respect to time?

(a) Average radius
$$= \frac{1}{10} \int_{0}^{10} \frac{1}{20} (3+h^2) dh = \frac{1}{200} \left[3h + \frac{h^3}{3} \right]_{0}^{10}$$

 $= \frac{1}{200} \left(\left(30 + \frac{1000}{3} \right) - 0 \right) = \frac{109}{60}$ in
(b) Volume $= \pi \int_{0}^{10} \left(\left(\frac{1}{20} \right) (3+h^2) \right)^2 dh = \frac{\pi}{400} \int_{0}^{10} (9+6h^2+h^4) dh$
 $= \frac{\pi}{400} \left[9h + 2h^3 + \frac{h^5}{5} \right]_{0}^{10}$
 $= \frac{\pi}{400} \left(\left(90 + 2000 + \frac{100000}{5} \right) - 0 \right) = \frac{2209\pi}{40}$ in³
(c) $\frac{dr}{dt} = \frac{1}{20} (2h) \frac{dh}{dt}$
 $-\frac{1}{5} = \frac{3}{10} \frac{dh}{dt}$
 $\frac{dh}{dt} = -\frac{1}{5} \cdot \frac{10}{3} = -\frac{2}{3}$ in/sec
 $= \frac{\pi}{400} \left(1 + \frac{1}{20} \left(2h + \frac{1}{20} \right) + \frac{1}{3} + \frac{1}{5} + \frac{1}{$

© 2016 The College Board. Visit the College Board on the Web: www.collegeboard.org.

AP[®] CALCULUS AB 2016 SCORING GUIDELINES

Question 6

x	f(x)	f'(x)	g(x)	g'(x)
1	-6	3	2	8
2	2	-2	-3	0
3	8	7	6	2
6	4	5	3	-1

The functions f and g have continuous second derivatives. The table above gives values of the functions and their derivatives at selected values of x.

(a) Let k(x) = f(g(x)). Write an equation for the line tangent to the graph of k at x = 3.

(b) Let $h(x) = \frac{g(x)}{f(x)}$. Find h'(1).

(c) Evaluate $\int_{1}^{3} f''(2x) dx$.

(a)	k(3) = f(g(3)) = f(6) = 4
	$k'(3) = f'(g(3)) \cdot g'(3) = f'(6) \cdot 2 = 5 \cdot 2 = 10$

An equation for the tangent line is y = 10(x - 3) + 4.

(b)
$$h'(1) = \frac{f(1) \cdot g'(1) - g(1) \cdot f'(1)}{(f(1))^2}$$

= $\frac{(-6) \cdot 8 - 2 \cdot 3}{(-6)^2} = \frac{-54}{36} = -\frac{3}{2}$

(c)
$$\int_{1}^{3} f''(2x) dx = \frac{1}{2} [f'(2x)]_{1}^{3} = \frac{1}{2} [f'(6) - f'(2)]$$

= $\frac{1}{2} [5 - (-2)] = \frac{7}{2}$

 $3: \begin{cases} 2: \text{ slope at } x = 3\\ 1: \text{ equation for tangent line} \end{cases}$

3:
$$\begin{cases} 2 : \text{ expression for } h'(1) \\ 1 : \text{ answer} \end{cases}$$

$$3: \begin{cases} 2: \text{ antiderivative} \\ 1: \text{ answer} \end{cases}$$