Unit 1 - Limits

1-3: Use the graph of the piecewise function, f, shown to find the requested values.

1. *f*(0)

 $2. \quad \lim_{x \to 2^{-}} f(x)$

 $3. \quad \lim_{x \to 3} f(x)$

4. $\lim_{x \to -5} \frac{x+5}{x^2 - 25}$

5. $\lim_{x \to 3} \frac{\sqrt{2x+3} - 3}{x-3}$

6. Find the horizontal asymptote(s) of $f(x) = \frac{\sqrt{4x^2 + 7}}{3x - 5}$.

A function f is said to be continuous at x = a if and only if...

•

•

•

Page 2

Draw an example(s) of each type of discontinuity.

Removable

Jump

Infinite

7. Find a value of q that will make g(x) continuous. $g(x) = \begin{cases} qx+3 & \text{for } x \leq 1 \\ (x+q)^2 - 10 & \text{for } x > 1 \end{cases}$

$$g(x) = \begin{cases} qx + 3 & \text{for } x \le 1 \\ (x + a)^2 - 10 & \text{for } x > 1 \end{cases}$$

8. Given selected values of the continuous function h(x), what is the fewest number of times h(x) is 43 on the interval [0, 30]?

	2000	100	39	30	60	3	50
x	0	5	10	15	20	25	30
h(x)	100	40	40	110	30	10	50

9. Given that $\lim_{x\to 7}v(x)=6$, $\lim_{x\to -7}v(x)=3$, and $\lim_{x\to 7}c(x)=5$ and that v(x) and c(x) are continuous,

evaluate the following.
$$\lim_{x\to 7^+} [v(-x) - 5c(x)]$$

10. Find the limit of $\lim_{x\to 0} x^2 \sin\left(\frac{1}{x}\right)$.

11. Tram α runs back and forth on a straight north-south path between an amusement park and an adjacent parking lot. Tram α 's velocity, measured in meters per second, is given by the continuous function $v_{\alpha}(t)$ where time t is measured in seconds. Selected values for $v_{\alpha}(t)$ are given in the table above.

t (seconds)	0	40	100	160	240
$v_{\alpha}(t)$ (meters/second)	0	10	4	-12	-15

Do the data in the table support the conclusion that tram α 's velocity is -10 meters per second at some time with 40 < t < 100? Give a reason for your answer.

12. Water is pumped into a tank at a rate modeled by $W(t) = 2000e^{-t^2/20}$ liters per hour for $0 \le t \le 8$, where t is measured in hours. Water is removed from the tank at a rate modeled by t liters per hour, where t is continuous and decreasing on t liters per hour, where t is continuous and decreasing on t liters per hour, where t liters per hour in the table below.

t (hours)	0	1	3	6	8
R(t) (liters/hour)	1340	1190	950	740	700

For $0 \le t \le 8$, is there a time t when the rate at which water is pumped into the tank is the same as the rate at which water is removed from the tank? Explain why or why not.

Page 4

13. The velocity of particle, P, moving along the x-axis is given by the differentiable function v_p , where $v_p(t)$ is measured in meters per hour and t is measured in hours. Selected values of $v_p(t)$ are shown in the table below. Particle P is at the origin at time t=0.

t (hours)	0	0.3	1.7	2.8	4
$v_p(t)$ (meters per hour)	0	55	-29	55	48

Justify why there must be at least one time t, for $0.3 \le t \le 2.8$, at which $v_p'(t)$, the acceleration of particle P, equals 0 meters per hour per hour.

14. Let g and h be continuous functions such that g(5) = h(5) = 1. Let k be a function satisfying $g(x) \le k(x) \le h(x)$ for 3 < x < 7. Is k continuous at x = 5? Justify your answer.