Unit 1 - 4 - L'Hospital's Rule

When the ratio of two functions tends to $\frac{0}{0}$ or $\frac{\infty}{\infty}$ in the limits, such forms are said to be indeterminant. There are other indeterminant forms such as $\infty - \infty$ which you were learn how to handle in subsequent math courses.

If functions f and g are differentiable on an open interval I, except for perhaps at x=a, and if $\lim_{x\to a} f(x) = 0 = \lim_{x\to a} g(x)$, then $\lim_{x\to a} \frac{f(x)}{g(x)} = \lim_{x\to a} \frac{f'(x)}{g'(x)}$. If necessary, rinse and repeat.

The same holds true for limits whose numerator and denominator both approach \pm infinity as x approaches a.

Evaluate the limits. Use L'Hospital's Rule only if it applies.

1.	$\lim_{x\to 0}$	sin(2x)
		$\sin(5x)$

2.
$$\lim_{x \to 0} \frac{\sqrt{x+1} - 1 - x/2}{5x^2}$$

$$3. \lim_{x \to \infty} \frac{\ln x}{4\sqrt{x}}$$

4. Note:
$$f(1) = 1$$
, $f'(1) = 2$ and $f''(1) = 3$

$$\lim_{x \to 1} \frac{10^x - 3f'(x)}{f(x) - \arctan x}$$

2016 AB/BC 5

- 5. The inside of a funnel of height 10 inches has circular cross sections, as shown in the figure above. At height h, the radius of the funnel is given by $r = \frac{1}{20}(3 + h^2)$, where $0 \le h \le 10$. The units of r and h are inches.
 - (c) The funnel contains liquid that is draining from the bottom. At the instant when the height of the liquid is h=3 inches, the radius of the surface of the liquid is decreasing at a rate of $\frac{1}{5}$ inch per second. At this instant, what is the rate of change of the height of the liquid with respect to time?

2017 AB 6

х	g(x)	<i>g</i> ′(<i>x</i>)
-5	10	-3
-4	5	-1
-3	2	4
-2	3	1
-1	1	-2
0	0	-3

Graph of h

6. Let f be the function defined by $f(x) = \cos(2x) + e^{\sin x}$.

Let g be a differentiable function. The table above gives values of g and its derivative g' at selected values

of x. Let h be the function whose graph, consisting of five line segments, is shown in the figure above.

(a) Find the slope of the line tangent to the graph of f at $x = \pi$.

(b) Let k be the function defined by k(x) = h(f(x)). Find $k'(\pi)$.

(c)Let *m* be the function defined by $m(x) = g(-2x) \cdot h(x)$. Find m'(2).