Unit 3 – Composite Derivative Rules

Cha	in	Dul	0.
CHa	ш	Ku.	e.

Power Rule, $a \& n$ constant. $\frac{d}{dx}[au^n]$	Exponential Function, base e . $\frac{d}{dx}[e^u]$	Exponential function, base a . $\frac{d}{dx}[a^u]$
$\frac{d}{dx}[\sin u]$	$\frac{d}{dx}[\cos u]$	$\frac{d}{dx}[\tan u]$
$\frac{d}{dx}[\sec u]$	$\frac{d}{dx}[\csc u]$	$\frac{d}{dx}[\cot u]$

Implicit Differentiation:
1. Find
$$\frac{dy}{dx}$$
 given $x^2 - 3xy + 4y^5 = 100$.

2. Find
$$\frac{d^2B}{dt^2}$$
 in terms of B given $\frac{dB}{dt} = 6\sqrt{10 - B}$.

	0 ¥	**	
Derivatives of	Inverse	Func	tions

If h(x) and g(x) are inverses, then h(g(x)) = x. What happens when we differentiate that equation?

- 1. Given that $p(x) = \sqrt[8]{2x-1}$ find $[p^{-1}]'(5)$.
- 2. The function f(x) is an increasing function about which little else is known other than f(2) = 7 and f'(2) = 5. Find $(f^{-1})'(7)$

More derivatives to have on quick recall in your brain!			
$\frac{d}{dx}[\ln u]$	$\frac{d}{dx} \left[\frac{1}{u} \right]$	$rac{d}{dx}[\sqrt{u}]$	
$\frac{d}{dx}[\arcsin u]$	$\frac{d}{dx}[\cos^{-1}u]$	$\frac{d}{dx}[\arctan u]$	

Analytical

$$\frac{1}{2}x^2 - \frac{1}{2}xy^2 + 6y = 2x$$

Find
$$\frac{dy}{dx}$$
 when $x = 4$

Numerical

x	-1	0	2	5
f(x)	0	2	5	4
f'(x)	-3	4	1	-2

$$g(x)=f\bigl(f(x)\bigr)$$

$$g'(-1) =$$

Derivative Rules: Level 2

Graphical

$$h(x) = g(f(x))$$
$$h'(2) =$$

Conceptual/Verbal

$$g$$
 is a linear function with $g(3) = g'(3) = 4$

$$k(x) = \frac{g(x)}{g(x+2)}$$

$$k'(3) =$$