Basic Integration ## 10.2 – U Substitution Indefinite Integrals ### **Substitution Method** Using differential notation, we can state three very useful integration formulas. (A) $$\int u^n du = \frac{1}{n+1} u^{n+1} + C$$ $n \neq -1$ (B) $$\int e^u du = e^u + C$$ (C) $$\int \frac{1}{u} du = \ln|u| + C$$ #### Why Integration By Substitution? Many functions cannot be integrated directly. Some functions can be integrated if a "u-substitution" is first done. #### Differential For a differentiable function f(x), the differential df is $$df = f'(x) dx$$ #### **Explanation for Differential** One of the notations for the derivative of a function f(x) is $\frac{df}{dx}$. Although written as a fraction, $\frac{df}{dx}$ was not defined as the quotient of two quantities df and dx, but as a single object, the *derivative*. We will now define df and dx separately (they are called differentials) so that their quotient df ightharpoonup df. $$f = f$$ $$\frac{df}{dx} = f'$$ $$df = f' dx$$ Note that df does NOT mean d times f. The dx is just the notation that appears at the end of integrals, arising from the Δx in the Riemann sum. The reason for finding the differentials will be made clear shortly. Baby Step 1 – Solve for the differential du $$#1) u = 3x^2$$ $$\frac{du}{dx} = 6x$$ #1) Differentiate each side with respect to x. #2) Solve equation for du. #2) $$u = \ln x$$ $$\frac{du}{dx} = \frac{1}{x}$$ #3) $$u = \frac{1}{2}e^{x^{2}}$$ $$\frac{du}{dx} = Xe^{x^{2}}$$ $$du = Xe^{x^{2}}dX$$ Baby Step 2 – Solve for the differential dx #1) $$u = x^3 + 1$$ $$\frac{du}{dx} = 3x^{2}$$ $$du = 3x^{2}dx$$ $$\frac{du}{dx} = dx$$ #1) Differentiate each side with respect to x. #2) Solve equation for dx. #2) $$u = e^{2t} + 1$$ #3) $$u = e^{-5}$$ # **Basic Integration** ## 10.2 – U Substitution Indefinite Integrals **Substitution Method (Repeated)** (A) $$\int u^n du = \frac{1}{n+1} u^{n+1} + C \qquad n \neq -1$$ (B) $$\int e^u du = e^u + C$$ (C) $$\int \frac{1}{u} du = \ln|u| + C$$ Baby Step 3 – For each of the following integrals, choose the most appropriate formula: (A), (B), or (C). $$#1) \qquad \int e^{5x^2-1}x dx$$ $$#2) \qquad \int \frac{x \, dx}{x^2 + 1}$$ $$\int (x^4 - 12)^4 x^3 dx$$ #4) $$\int (x^4 - 12)^{-1} x^3 dx$$ Integrating by Substitution $\int (x^2 + 2)^3 2x \, dx$ $= \int (u)^3 2x \frac{du}{2x}$ = Su3du = +14"+C = 4(x2+2)4+($$u = x^{2} + 2$$ $$\frac{du}{dx} = 2x$$ $$du = 2x dx$$ $$\frac{du}{dx} = dx$$ - #1) Set u equal to an expression. (Be smart!) - #2) Differentiate both sides of that equation and solve for - #3) Substitute in *u* and substitute for dx. - #4) Simplify - #5) Integrate the function. - #6) Finally, replace the *u* with the expression from step #2) $$\int e^{x^2-4}2x \, dx$$ $$= \int e^{u} \approx \left(\frac{du}{2x}\right)$$ $$= \int e^{u} \, du$$ $$= e^{u} + ($$ $$= e^{x^2-4} + ($$ $$u = x^{2} - 4$$ $$\frac{du}{dx} = 0x$$ $$du = 0x dx$$ $$\frac{du}{dx} = dx$$ #3) $$\int \frac{3x^2}{x^3-7} dx$$ $$= \left(\frac{3x}{3x^2}\right) \left(\frac{du}{dx}\right) = 3x^2$$ $$= \int \frac{du}{dx} $$u = x^{3} - 7$$ $$\frac{du}{dx} = 3x^{3}$$ $$du = 3x^{3} dx$$ $$\frac{du}{3x^{2}} = dx$$ # **Basic Integration** ## 10.2 – U Substitution Indefinite Integrals Integrate by substitution with extra constants. #4) $$\int (x^2 + 4)^3 x \, dx = \int u^3 x \left(\frac{du}{dx}\right)$$ $$= \int \int u^3 \, du$$ $$= \int \int (\frac{1}{4}u^4) + C$$ $$= \int (x^2 + 4) + C$$ $$= \int (x^2 + 4) + C$$ $$= \int (x^2 + 4) + C$$ #1) $$\int \sqrt{x^3 - 3x}(x^2 - 1)dx = \int \sqrt{u} (x^2 - 1) \frac{du}{3x^2 - 3}$$ $$= \int \sqrt{u} (x^2 - 1) \frac{du}{3(x^2 - 1)}$$ $$= \int \sqrt{u} (x^2 - 1) \frac{du}{3(x^2 - 1)}$$ $$= \frac{1}{3} \int u^{\frac{1}{2}} du$$ Baby Step 4 – Dec Substitution $$= \frac{1}{3} \left(\frac{2}{3}\right) u^{\frac{3}{2}} + C$$ #2) $$\int e^{\sqrt{x}} x^{-1/2} dx = \int e^{u} \int_{\overline{x}} \left(2x du \right)$$ $$= 2 \int e^{u} du$$ $$= 2 \int e^{u} du$$ $$= 2 \int e^{u} + C$$ \int$$ Substitution Does NOT Work For All Problems Show that substitution cannot be used to integrate $\int e^{x^4} dx = \int e^{u} \left(\frac{du}{4x^3} \right)$ $$U = X^{4}$$ $$\frac{dy}{dx} = 4x^{3}$$ $$du = 4x^{3} dx$$ $$\frac{du}{4x^{3}} = dx$$ Baby Step 4 – Decide Which Integral Can Be Found By Substitution Substitution #1) $$\int (x^3 + 1)^3 x^3 dx = \int u^3 x^3 \left(\frac{du}{3x^2}\right)$$ $$\frac{du}{dx} = 3x^2$$ $$du = 3x^2 dx$$ $$\frac{du}{3x^2} = dx$$ #2) $$\int e^{x^2} dx = \int e^{u} \left(\frac{dv}{2x} \right)$$ $$u = x^{2}$$ $$\frac{dy}{dx} = 2x$$ $$du = 2xdx$$ $$\frac{dy}{2x} = dx$$ # Basic Integration 10.2 – U Substitution Indefinite Integrals