Finding Values of Derivatives Using the Graphing Calculator

For each of the functions below, find the value of f'(x) at the indicated value of x using the graphing calculator. Then, determine if the function is increasing, decreasing, has a horizontal tangent or has a vertical tangent. Give a reason for your answer.

Function	Value of f'(a)	Is $f(x)$ increasing or decreasing, or does $f(x)$ have a horizontal or a vertical tangent?
$f(x) = 3e^x \sin x$	$a=-2$ $f'(-2) \approx -0.538$	f(x) is decreasing at $x=-2ble f'(-2) \ge 0$
$f(x) = 3e^x \sin x$	a=1 3'(1) ≈ 11.268	f(x) is increasing at $x=1ble f'(1)>0$
$f(x) = \frac{\ln(\cos x)}{x^2}$	$a = \frac{\pi}{3}$ $f'(\frac{\pi}{3}) \approx -0.372$	$f(x)$ is decreasing at $x = \frac{\pi}{3}$ ble $f'(\frac{\pi}{3}) \ge 0$
$f(x) = \frac{\ln(\cos x)}{x^2}$	a=π f'(n) = DHE	f(x) has a vertical tangent of x=17 b/c f'(tr) = DNE
$f(x) = e^{\tan(0.34x)}$	a=0 f'(0) \tau 0.340	f(x) is increasing at $x=0ble f'(0)>0$
$f(x) = 5\sin^2(\ln x)$	a=1 ♀'(1)≈o	f(x) has a horizontal tangent at x=1 b/c f'(1)=0

When the value of the derivative of a function is positive, we say that the function is increasing. When the value of the derivative of a function is negative, we say that the function is decreasing. When speaking of quantities increasing or decreasing, they do so at a certain rate. We already understand the derivative to be the SLOPE OF THE TANGENT LINE. Slope is a rate. Therefore, the derivative of a function actually represents the RATE AT WHICH A FUNCTION IS CHANGING.

	7	The number of people entering a concert can be modeled by the function $f(t) = 560e^{\sin t}$, where t
	represents the number of hours after the gates are open.	

Find the values of $f(\frac{1}{2})$ and $f'(\frac{1}{2})$. Using correct units, explain what each value represents in the context of this problem.

context of this problem.

$$f(\frac{1}{2}) = 904.482 \implies \frac{1}{2} \text{ an hour after the gates open, the number of people}$$

entering the concert 15 904 people.

How many people have entered the concert 2 hours after the gates are opened? Is the number of people entering increasing or decreasing at this time? Justify your answer.

8. After being poured into a cup, coffee cools so that its temperature,
$$T(t)$$
, is represented by the function $T(t) = 70 + 110e^{-t/2}$, where t is measured in minutes and $T(t)$ is measured in degrees Fahrenheit.

What is the temperature of the coffee 5 minutes after it has been poured into the cup?

Is the temperature decreasing faster 1 minute after it is poured or 3 minutes after it is poured? Give a reason for your answer.