Notes 3.6 – Derivatives of Inverse Functions

From earlier courses, let's take just a moment and remember what inverse functions are. Given a function, f(x), the inverse function, $f^{-1}(x)$, is numerically defined to be f(x) = f(x) = f(x)

domain is the rang of f(x) and whose range is the domain of f(x)

If $f^{-1}(x)$ is the inverse of f(x), then $f(f^{-1}(x)) = x$ and $f^{-1}(f(x)) = x$

Analytical Representation of the Inverse

Consider the two functions, f(x) and g(x), represented numerically below. Answer the questions that follow.

X	f(x)	g(x)
-2	3	1
1	2	-2

$$\frac{(1'-3)}{(-3'1)} \frac{(-3'1)}{(1'-3)}$$

$$\frac{(-3'1)}{3(k)} \frac{(1'-3)}{3_{-1}(k)}$$

Complete the table of values below.

X	$f^{-1}(x)$
3	- γ
2	

Complete the table of values below.

X	$g^{-1}(x)$
	-3
-3	-

Find the value of $f(g^{-1}(-2))$.

Find the value of $f^{-1}(f(1))$.

Find the value of $g^{-1}(f^{-1}(2))$.

Find the value of $f^{-1}(g(g^{-1}(1)))$.

Given below is the relationship that exists when a composite function is formed using a function and its inverse. Use the chain rule to differentiate both sides of the equation and find the formula for the derivative of $f^{-1}(x)$.

Finding a Formula for the Derivative of an Inverse

Differentiate both sides of the equation below.

$$\begin{aligned}
 t_{-1}(x) &= \frac{t_{+}[t_{-1}(x)]}{t_{+}(x)} \\
 t_{+}(t_{-1}(x)) \cdot [t_{-1}(x)] &= 1
 \end{aligned}$$

Suppose that
$$f(x) = 3x + 2$$
 and $f'(-2) = 3$. What is the value of $[f^{-1}(-4)]$?

Suppose that
$$f(x) = 3x + 2$$
 and $f'(-2) = 3$. What is the value of $[f^{-1}(-4)]'$?

$$f^{-1}(x) = \frac{1}{3}(x-2)$$

$$x = 3y + 2$$

$$x - 2 = 3y$$

$$x - 2 = 3y$$

$$x - 3 = 3y$$

$$x - 4 = 3y + 2$$

$$x - 4$$

(3.1) (1.3)

Given to the right is a table of values for f, g, f', and g'Use the values in the table to find each indicated value in the boxes below. (-4,0)

x	f	g	f'	g'	9-1
-2	1	2	0	3	(2,-3)
0	-4	-3	-1	2	(-3,0)
1	3	-2	2	1	(-2,1)
3	1	1	-3	-2	(1,3)

Find the value of
$$[f^{-1}(3)]'$$
.

$$\begin{bmatrix}
\xi^{-1}(x) \end{bmatrix}' = \frac{f'[\xi^{-1}(x)]}{f'[\xi^{-1}(x)]}$$

$$= \frac{1}{f'(x)}$$

$$\begin{bmatrix}
\xi^{-1}(x) \end{bmatrix}' = \frac{1}{5}$$

Find the value of
$$[g^{-1}(-2)]'$$
.

$$\left[g^{-1}(x)\right] = \frac{1}{g'[g^{-1}(-2)]}$$

$$= \frac{1}{g'[f^{-1}(-2)]}$$

$$= \frac{1}{g'[f^{-1}(-2)]}$$

$$= \frac{1}{g'[f^{-1}(-2)]}$$

The functions, f and g, are differentiable functions and selected values of them and their first derivatives, f and g, are shown in the table below. Use the table of values to answer the questions that follow.

t-1	х	f	g	f'	g'	3-1
(1'-5)	-2	1	2	0	3	(5'-5)
(4,0)	0	-4	-3	-1	2	(-3,6)
(311)	1	3	-2	2	1	(-211)
(1,3)	3	1	1	-3	-2	(1,3)

Find the value of $[g^{-1}(1)]'$. Then, find the equation of the line tangent to the graph of g^{-1} when x = 1.

Estimate the value of f'(2). Based on this value, what conclusion can be reached about the graph of f when x = 2? Explain your reasoning.

$$f'(3) \approx \frac{f(3) - f(1)}{3 - 1} = \frac{(1) - (3)}{2} = \frac{-2}{2} = -1$$

The graph is decreesing at x=2 b(c f'(i) LO

Estimate the value of g'(-1). Based on this value, what conclusion can be reached about the graph of g when x = -1? Explain your reasoning.

$$g'(1) \approx \frac{g(2)-g(0)}{(-2)-(0)} = \frac{(2)-(-3)}{-2} = \frac{5}{-2}$$

The graph is decreesing at x=-1 blc g'(-1) LO