7.1 Rectangular Approximation

CALCULUS
Write your questions here!

Car travels 60 miles per hour

How far did you travel from I hour to 4 hours? 180 miles

Left Endpoint Rectangle for interval [1,3] with n subintervals

$$
\begin{aligned}
& \Delta x=\frac{b-a}{n} \\
& n=2 \\
& \text { if } \Delta x=\frac{z}{2}=1 \\
& \text { st } \\
& \text { Area }=1 \cdot f(1)+1 \cdot f(2) \\
& \\
& =1.2+1.5 \\
& \\
& =?
\end{aligned}
$$

Right Endpoint Rectangle for interval [1,3] with n subintervals
$n=2$

$$
f(x)=x^{2}+1
$$

$$
f(x)=x^{2}+1
$$

$$
A=\frac{1}{2}\left[f(1)+f\left(\frac{2}{2}\right)+f(2)+f(\xi)\right]
$$

AN $\frac{1}{2}\left[2+\frac{11}{4}+5+\frac{29}{4}\right)$
$A=\frac{1}{2}\left[\frac{33}{2}\right] \approx \frac{35}{4}$
$n=4$

$\Delta x=\frac{2}{6}=\frac{1}{3}$

Midpoint Rectangle for interval [1,3] with n subintervals

$$
f(x)=x^{2}+1
$$

$n=4$

Sketch the following rectangular approximations

Left Endpoint $n=5$ $[1,3]$

Right Endpoint $n=8$ $[1,4]$

Midpoint $n=6$

The rate at which water is being pumped into a tank is given by the continuous and increasing function $R(t)$. A table of selected values of $R(t)$, for the time interval $0<t<13$ minutes, is given below.

SUMMARY

Use right Riemann Sum with 4 subintervals to approximate the area under the curve.

$$
A=4 f(4)+2 f(6)+4 f(10)+3 f(13)] \approx 4(13)+2(18)+4(23)+3(27)
$$

What does this represent?

$$
\approx x_{1}
$$

TOtal Gallons of water pumped into tank in first 13 mints.
Is the approximation greater or less than the true value?
Since the graph is increasing, the approximation is greater than the true value.

