7.7 - Volume of a Solid of Revolution Washers

$$V = \pi \int_{a}^{b} [R^{2}(x) - r^{2}(x)] dx$$

Where R(x) is the radius of the outer function and r(x) is the radius of the inner function.

1. Find the volume if the region enclosed by $y = \sqrt{x}$ and $y = x^2$ is rotated about the x-axis.

(2)
$$R^2 = (r_x)^2 = x$$

 $r^2 = (x^2)^2 = x^4$

$$V = \pi \int_{0}^{\pi} \left[x - x^{2}\right] dx$$

2. Find the volume if the region enclosed by $y = \sqrt{x}$ and $y = x^2$ is rotated about the line y = 1.

(1)
$$R^2 = (1 - x^2)^2$$

3. Find the volume if the region enclosed by $y = x^2 + 1$ and y = 2x + 1 is rotated about the y-axis

(2)
$$R^2 = \left(\frac{1}{4-1}\right)^2 = 4-1$$

(3) 2: [15]

(4)
$$V = \pi \sqrt[3]{R^2 - r^2} dy$$

$$V = \pi \sqrt[3]{[(y-1) - (\frac{1}{2}y - \frac{1}{2})^2]} dy$$

$$V = 2.66717 un^3$$

4. Find the volume if the region enclosed by $y = x^2 + 1$ and y = 2x + 1 is rotated about the line x = -1.

(E)
$$R^{2} = \left(\frac{1}{2} - \frac{1}{2}\right)^{2} = \left(\frac{1}{2} + \frac{1}{2}\right)^{2}$$

(4)
$$V = \pi \sqrt{\frac{2}{3}} \left[(\sqrt{1+1} + 1)^2 - (\frac{1}{2} + 1 + \frac{1}{2})^2 \right] dy$$