\qquad
NO CALCULATOR IS ALLOWED FOR THIS QUESTION.

3. The graph of the function f, consists of three line segments and a quarter of a circle, is shown above. Let g be the function defined by $g(x)=\int_{1}^{x} f(t) d t$.
(a) Find the average rate of change of g from $x=-5$ to $x=5$.

$$
\begin{aligned}
& A R C=\frac{g(-5)-g(5)}{-5-5}+1 \\
&=\frac{(\pi+7)-10}{-10} \quad \text { Annexed dose } \\
& \text { ned simp ificiod) } \\
& \text { ARC }=\frac{\pi-5}{-10}+2
\end{aligned}
$$

SIDE WORK

$$
g(-5)=\int_{1}^{-5} f(t) d t=-(-7-\pi)=\pi+7
$$

$$
g(5)=\int_{1}^{5} f(t) d t=12
$$

(b) Find the instantaneous rate of change of g with respect to x at $x=3$, or state that it does not exits.

$$
\begin{aligned}
& g^{\prime}(x)=f(x) \cdot x^{\prime} \\
& g^{\prime}(3)=f(3)=4
\end{aligned}
$$

The instantanears rate of change of g at $x=3$ is $4+1$
\qquad
(c) On what open intervals, if any, is the graph of g concave up? Justify your answer.

$$
g^{\prime}(x)=f(x) \text { is increasing on }-5<x<-2 \text { and } 0<x<3
$$

\therefore The graph of g is concave up on $-5<x<-2$ and $0<x<3+1$
(d) Find all x-values in the interval $-5<x<5$ at which g has a critical point as the location of a local minimum, or local maximum, or neither. Justify your answers.
+1) - $g^{\prime}(x)=f(x)=0$ at $x=-2$ and $x=1$
$\therefore g(x)$ has neither a local maximum or local minimum at $x=-2$

- $g^{\prime}(x)$ change from negative to positive at $x=1$
$\therefore g(x)$ has local minimum at $x=1$
\qquad
NO CALCULATOR IS ALLOWED FOR THIS QUESTION.

4. Consider the curve given by the equation $2(x-y)=3+\cos y$. For all points on the curve, $\frac{2}{3} \leq \frac{d y}{d x} \leq 2$.
(a) Show that $\frac{d y}{d x}=\frac{2}{2-\sin y}$.

$$
\begin{gathered}
\partial(x-y)=3+\cos y \\
\partial x-\partial y=3+\cos y \\
\frac{d}{d x}(\partial x)-\frac{d}{d x}(2 y)=\frac{d}{d x}(3)+\frac{d}{d x}(\cos y) \\
\partial-\partial \cdot \frac{d y}{d x}=0-\sin y \cdot \frac{d y}{d x} \\
\partial=2 \frac{d y}{d x}-\sin y \frac{d y}{d x} \\
\partial=\frac{d y}{d x}(\partial-\sin y) \\
\frac{\partial}{\partial-\sin y}=\frac{d y}{d x}
\end{gathered}
$$

(b) For $-\frac{\pi}{2}<y<\frac{\pi}{2}$, there is a point P on the curve through which the line tangent to the curve has slope 1 . Find the coordinates of the point P

$$
\frac{d y}{d x}=1+1
$$

$$
\frac{2}{2-\sin y}=1
$$

$$
\left\{\begin{aligned}
2(x-y) & =3+\cos y \\
2(x-0) & =3+\cos 0 \\
2 x & =3+1 \\
2 x & =4 \\
x & =2
\end{aligned}\right.
$$

$$
\begin{aligned}
& \partial=2-\sin y \\
& 0=-\sin y \\
& 0=\sin y \\
& 0=y
\end{aligned}
$$

NOT NEEDED

P hes coordinates (2,0)
(c) Determine the concavity of the curve at points which $-\frac{\pi}{2}<y<\frac{\pi}{2}$. Give a reason for your answer.

$$
\begin{aligned}
& \frac{d y}{d x}=\frac{2}{\partial-\sin y} \\
& \frac{d^{2} y}{d x^{2}}=\frac{(0) \cdot(2-\sin y)-2\left(0-\cos y \frac{d y}{d x}\right)}{(2-\sin y)^{2}} \\
& \frac{d^{2} y}{d x^{2}}=\frac{2 \cos y \frac{d y}{d x}}{(2-\sin y)^{2}}+2 \\
& \frac{d^{2} y}{d x^{2}}=\frac{2 \cdot(t)(t)}{(t)}=\text { positive }
\end{aligned}
$$

(d) Let $y=f(x)$ be a function, defined implicitly by $2(x-y)=3+\cos y$, that is continuous on the closed interval $[2,2.1]$ and differentiable on the open interval $(2,2.1)$. Use the Mean Value Theorem on the interval $[2,2.1]$ to show that $\frac{1}{15} \leq f(2.1)-f(2) \leq \frac{1}{5}$.
mean value Meorem...
$+1\left\{\begin{array}{l}\text { A value of } c \text { on }(2,2.1) \text { must exist so that } f^{\prime}(c)=\frac{f(2.1)-f(2)}{2.1-2}\end{array}\right.$

$$
\begin{aligned}
& \frac{2}{3} \leq f^{\prime}(x) \leq 2[\text { from stem of problem }] \\
& \frac{2}{3} \leq \frac{f(2.1)-f(2)}{0.1} \leq 2 \\
& \frac{2}{3} \leq[f(2.1)-f(2)] \cdot 10 \leq 2 \\
& \frac{2}{3} \cdot \frac{1}{10} \leq f(2.1)-f(2) \leq 2 \cdot \frac{1}{10} \\
& \frac{1}{15} \leq f(2.1)-f(2) \leq \frac{1}{5}
\end{aligned}
$$

