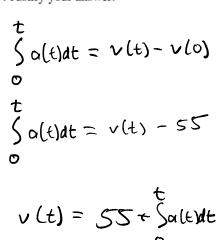

2001 AP® CALCULUS AB

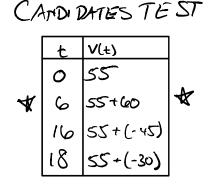
A car is traveling on a straight road with velocity 55 ft/sec at time t = 0. For $0 \le t \le 18$ seconds, the car's acceleration a(t), in ft/sec^2 , is the piecewise linear function defined by the graph above.

(a) Is the velocity of the car increasing at t = 2 seconds? Why or why not?

v'(3) = a(3) = 15. Since a(3) = 15, the acceleration is positive which implies the velocity is increasing at t=2.

(b) At what time in the interval $0 \le t \le 18$, other than t = 0, is the velocity of the car 55 ft/sec? Why?


$$a(t)dt = v(b) - v(o)$$


$$= 55 - 55$$

$$a(t)dt = 0 \qquad (when does Area under caree Sum to 0?)$$

: v(12) = 55 Alser

(c) On the time interval 0 ≤ t ≤ 18, what is the car's absolute maximum velocity, in ft/sec, and at what time does it occur? Justify your answer.

: At 6 seconds, the car reaches a maximum velocity of 115 fls

(d) At what times in the interval $0 \le t \le 18$, if any, is the car's velocity equal to zero? Justify your answer.

$$\int_{0}^{b} a(t)dt = v(b) - v(0)$$
The Sum of the areas
$$= 0 - 55$$
under the curve new
$$\int_{0}^{b} a(t)dt = -55$$
Sum to -55 f/sec

The car's velocity never reaches Zero. The absolute minimum velocity on [0,18] is 10 fls when t = 16 seconds as shown in part (C).