\qquad

A GRAPHING CALCULATOR IS REQUIRED.

t (minutes)	0	1	5	6	8
$g(t)$ (cubic feet per minute)	12.8	15.1	20.5	18.3	22.7

9. Grain is being added to a silo. At time $t=0$, the silo is empty. The rate at which the grain is being added is modeled by the differential function g, where $g(t)$ is measured in cubic feet per minute for $0 \leq t \leq 8$ minutes. Selected values of $g(t)$ are given in the table.
(a) Using the date in the table, approximate $g^{\prime}(3)$. Using correct units, interpret the meaning of $g^{\prime}(3)$ in context of the problem.

Part A

1 point is earned for: approximation
1 point is earned for: interpretation with units
$g^{\prime}(3) \approx \frac{g(5)-g(1)}{5-1}=\frac{20.5-15.1}{4}=1.35$
At time $t=3$ minutes, the rate at which grain is being added to the silo is increasing at a rate of 1.35 cubic feet per minute per minute.

2

(b) Write an integral expression that represents the total amount of grain added to the silo from time $t=0$ to time $t=8$. Use at right Reman sum with the four subintervals indicated by the data in the table to annrnximate the intenial
Part B
1 point is earned for: integral expression
1 point is earned for: right Riemann sum
1 point is earned for: approximation
The total amount of grain added to the silo from time $t=0$ to time $t=8$ is $\int_{0}^{8} g(t) d t$ cubic feet.

$$
\begin{aligned}
\int_{0}^{8} g(t) d t & \approx g(1) \cdot(1-0)+g(5) \cdot(5-1)+g(6) \cdot(6-5)+g(8) \cdot(8-6) \\
& =15.1 \cdot 1+20.5 \cdot 4+18.3 \cdot 1+22.7 \cdot 2=160.8
\end{aligned}
$$

\qquad
(c) The grain int eh silo is spoiling at a rate modeled by $w(t)=32 \sqrt{\sin \left(\frac{\pi t}{74}\right)}$, where $w(t)$ is measured in cubic feet per minute for $0 \leq t \leq 8$ minutes. Using the result from part (b), approximate the amount of unsoiled grain remaining in the silo at time $t=8$.

Part C

1 point is earned for: integral
1 point is earned for: answer

$$
\int_{0}^{8} w(t) d t=99.051497
$$

The approximate amount of unspoiled grain remaining in the silo at time $t=8$ is
$160.8-\int_{0}^{8} w(t) d t=61.749$ (or 61.748) cubic feet.

0

 1
2

(d) Based on the model in part (c), is the amount of unspoiled grain in the silo increasing or decreasing at time $t=6$? Show the work that leads to your answer.

Part D

1 point is earned for: considers $g(6)-w(6)$
1 point is earned for: answer
$g(6)-w(6)=18.3-16.063173=2.236827>0$
Because $g(6)-w(6)>0$, the amount of unspoiled grain is increasing at time $t=6$.
\qquad A GRAPHING CALCULATOR IS REQUIRED.

10. During the time interval $0 \leq t \leq 4.5$ hours, water flows into tank A at a rate of $a(t)=(2 t-5)+5^{2 \sin t}$ liters per hour. During the same time interval, water flows into $\operatorname{tank} B$ at a rate of $b(t)$ liters per hour. Both tanks are empty at time $t=0$. The graphs of $y=a(t)$ and $y=b(t)$, shown in the figure above, intersect at $t=k$ and $t=2.416$.
(a) How much water will be tank A at time $t=4.5$?

Part A
1 point is earned for: integral
1 point is earned for: answer
$\int_{0}^{4.5} a(t) d t=66.532128$
At time $t=4.5, \operatorname{tank} A$ contains 66.532 liters of water.
(b) During the time interval $0 \leq t \leq k$ hours, water flows into $\operatorname{tank} B$ at a constant rate of 20.5 liters per hour. What is the difference between the amount of water in $\operatorname{tank} A$ and the amount of water in $\operatorname{tank} B$ at time $t=k$?

Part B

1 point is earned for: sets $a(k)=20.5$
1 point is earned for: integral
1 point is earned for: answer

$$
\begin{aligned}
& a(k)=20.5 \Rightarrow k=0.892040 \\
& \int_{0}^{k}(20.5-a(t)) d t=10.599191
\end{aligned}
$$

At time $t=k$, the difference in the amounts of water in the tanks is 10.599 liters.
\qquad
(c) The area of the region bounded by the graphs of $y=a(t)$ and $y=b(t)$ for $k \leq t \leq 2.416$ is 14.470. How much water is in the tank B at time $t=2.416$?

$$
\begin{aligned}
& \text { Part C } \\
& 1 \text { point is earned for: } \int_{k}^{2.416} a(t) d t \\
& 1 \text { point is earned for: answer } \\
& \int_{0}^{2.416} b(t) d t=\int_{0}^{k} b(t) d t+\int_{k}^{2.416} b(t) d t \\
& \int_{0}^{k} b(t) d t=20.5 \cdot k=18.286826 \\
& \text { On } k<t<2.416 \text {, tank } A \text { receives } \\
& \int_{k}^{2.416} a(t) d t=44.497051 \text { liters of water, which is } 14.470 \\
& \text { more liters of water than tank } B \text {. } \\
& \text { Therefore, } \\
& \int_{k}^{2.416} b(t) d t=\int_{k}^{2.416} a(t) d t-14.470=30.027051 . \\
& \int_{0}^{k} b(t) d t+\int_{k}^{2.416} b(t) d t=48.313876
\end{aligned}
$$

At time $t=2.416$, tank B contains 48.314 (or 48.313) liters of water.

0	1	2

(d) During the time interval $2.7 \leq t \leq 4.5$ hours, the rate at which water flows into tank B is modeled by $w(t)=21-\frac{30 t}{(t-8)^{2}}$ liters per hour. Is the difference $w(t)-a(t)$ increasing or decreasing at time $t=3.5$? Show the work that leads to your answer.

Part D

1 point is earned for: $w^{\prime}(3.5)-a^{\prime}(3.5)<0$

1 point is earned for: conclusion

$w^{\prime}(3.5)-a^{\prime}(3.5)=-1.14298<0$
The difference $w(t)-a(t)$ is decreasing at $t=3.5$.

