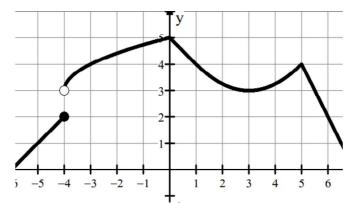
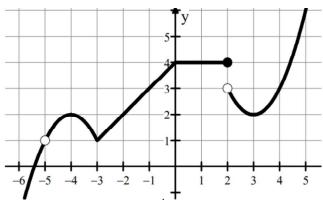

Unit 2.4 Determining When Derivatives Do and Do Not Exist

Identify any x-values of the function that are not continuous and/or not differentiable.


1.

x-values where the function is not continuous.

x-values where the function is continuous, but not differentiable.


2.

x-values where the function is not continuous.

x-values where the function is continuous, but not differentiable.

3.

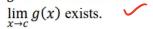
x-values where the function is not continuous.

x-values where the function is continuous, but not differentiable.

- 4. \underline{f} is continuous for $a \le x \le b$ but not differentiable for some c such that a < c < b. Which of the following could be true?
 - not cont.
- Not Cont.

cont, not deft

- (A) x = c is a vertical asymptote of the graph of f.
- (B) $\lim_{x \to c} f(x) \neq f(c)$
- (C) The graph of f has a cusp at x = c.

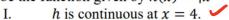

(D) f(c) is undefined.

not cont.

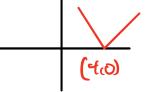
- (E) None of the above
- If g is differentiable at x = c, which of the following must be true?

g is continuous at x = c.

 $\lim_{r \to c} \frac{g(x) - g(c)}{r - c}$ exists.



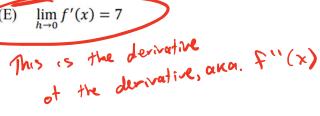
I only


II only (B)

(C) III only

- (D) I and II only
- I, II, and III
- 6. Let h be the function given by h(x) = |x 4|. Which of the following statements about h are true?

- h is differentiable at x = 4. II.
- h has an absolute minimum at x = 4. III.


(A) I only

II only (B)

(C) III only

- (D) I and III only
- II and III only
- 7. If f is a differentiable function such that f(2) = 5 and f'(2) = 7, which of the following statements could be

