Homework 3.7

Use the graph of H(x), pictured to the right, to complete exercises 1 - 4.

1. The graph of H(x) is continuous on its domain but not differentiable at all values on its domain. At what value on -6 < x < 6 is H(x) not differentiable. Give a graphical reason for your answer.

2. Write an equation of H(x) and show analytically that H(x) is, in fact, continuous at the x – value that you identified in exercise 1. Show and explain your work.

: lim HEX) = 1 and therefore exists

3. Show analytically that H(x) is, in fact, not differentiable at the x – value that you identified in exercise 1. Show and explain your work. H(x) is continuous at X=2

$$H'(x) = \begin{cases} -\frac{1}{\xi}, & -6 \le x \le 2 \\ -2(x-u)(i), & 2 \le x \le 6 \end{cases}$$

$$\frac{I. \ H(x) \ is \ Continuous \ T. \ \lim_{x \to 2^-} H'(x) = -\frac{1}{2}$$

H(x) is not differentiable at
$$X=2$$
.

4. Given the graph of H(x) pictured above, find the equation of the tangent line to the graph of $P(x) = \sqrt{H(x)}$ when x = 3.

$$PoT: (3,2)$$
 SoT: $m = \frac{1}{3}$ Tangest Line
 $P(3) = \sqrt{H(3)}$ $P'(x) = \frac{1}{3} \left(H(x) \right)^{-1/2} \cdot H'(x)$ $Y - 2 = \frac{1}{3} \left(x - 3 \right)$

P(3) = >

$$= \sqrt{A}$$

$$b_{1}(x) = \frac{2 \cdot \mu(x)}{\mu_{1}(x)}$$

$$b_{2}(x) = \frac{2 \cdot \mu(x)}{\mu_{2}(x)}$$

$$b_{1}(3) = \frac{3 \ln(3)}{H_{1}(3)}$$

$$=\frac{3\cdot 3}{-3(-1)}$$

$$p'(3) = \frac{\frac{1}{2\sqrt{H(3)}}}{\frac{2\sqrt{H(3)}-4}{2\sqrt{4}}}$$

A continuous function on the interval -4 < x < 5, h(x), is described in the table below. Use the information to complete exercises 5 - 8.

x	-4	-2	-1	0	-4 < x < 0	1	3	0 < x < 3	3 < x < 5	5
h(x)	- 5	-4	-2	1	Increasing & Concave Up	-1	-2	Decreasing & Concave Up	Increasing & Concave Up	0

5. Sketch a graph of h(x).

6. Estimate the value of h'(-2). Does this value support the claim that h(x) is increasing on the interval -4 < x < 0? Give a reason for your answer.

$$h'(-2) \approx \frac{h(-4) - h(-1)}{(-4) - (-1)} = \frac{-5 - (-2)}{-3} = \frac{-3}{-3} = 1$$

 $h'(-3) \approx 1$ supports the claim that $h(x)$ is increasing on $(-4,0)$

7. There are three x – values in the domain of h at which h(x) is not differentiable. What are these three values and give a reason for why h(x) is not differentiable at these values.

•
$$H(x)$$
 is not differentiable at $x = -4,0, or 5$.
• $H(x)$ is not continuous at $x = -4$ and $x = 5$.
• $H(x)$ has a cusp at $x = 0$

8. On what interval(s) of x is h'(x) > 0? Give a reason for your answer.

9. At what value(s) of x will the graph of $f(x) = 2e^{2x} - 3x$ have a tangent line whose slope is 1?

$$f(x) = 2e^{2x} \cdot (2) - 3$$

$$f(x) = 4e^{2x} - 3$$

$$1 = 4e^{2x} - 3$$

$$4 = 4e^{2x}$$

$$1 = e^{2x}$$

$$e^{2x} = e^{2x}$$

$$0 = 2x$$

$$Answer \rightarrow 0 = x$$

10. The graph of x - 2y = 9 is parallel to the normal line to the graph of f(x) when x = 5. What is the value of f'(5)? Justify your answer.

$$x-2y=9$$
 $-2y=-x+9$
 $y=\frac{1}{2}x-\frac{9}{2}$
 $SON=\frac{1}{2}$
 $SOT=-2$

- The value of f'(5) = -2 because f'(5)15 the slope of the tangent line which
 15 \perp to the slope of the normal line at x=5.

 The slope of the normal line is the same as
 the slope of $\chi-2\gamma=9$ because they are parallel with a slope of $\frac{1}{2}$.
- 11. Let f be defined by the function $f(x) = \begin{cases} 3 x, & x < 1 \\ ax^2 + bx, & x \ge 1 \end{cases}$.
 - a. If the function is continuous at x = 1, what is the relationship between a and b? Explain your reasoning using limits.

$$3-(1) = \alpha(1)_{5} + \beta(1)$$

$$\sum_{i,m} f(x) = \sum_{i,m} f(x)$$

b. Find the unique values of a and b that will make f both continuous and differentiable at x = 1. Show your analysis using limits.

$$\lim_{x \to 1^{-}} f'(x) = \lim_{x \to 1^{+}} f(x)$$

$$\lim_{x \to 1^{-}} -1 = \lim_{x \to 1^{+}} f(x)$$

$$\lim_{x \to 1^{-}} -1 = \lim_{x \to 1^{+}} f(x)$$

$$-1 = 2a+b$$

$$2 = a + b$$

$$3 = -a$$

$$3 = -a$$

$$-3 = a$$

$$5 = b$$