## Extra Practice – Implicit Differentiation and Related Rates - 1. Sand is deposited into a pile with a circular base. The volume V of the pile is given by $V = \frac{r^2}{2}$ , where r is the radius of the base, in feet. The circumference of the base is increasing at a constant rate of $5\pi$ feet per hour. When the circumference of the base is $8\pi$ feet, what is the rate of change of the volume of the pile, in cubic feet per hour? - $C = 2\pi r$ $dC = 2\pi \cdot \frac{dr}{dt}$ - If $e^{xy} y^2 = e 4$ , then at $x = \frac{1}{2}$ and y = 2, $\frac{dy}{dx} = \frac{1}{2}$ - $\frac{d}{dx}e^{xy} \frac{d}{dx}y^2 = \frac{d}{dx}(e^{-4})$ - = dx (xex ->y)=-yexy $e^{xy} \cdot \left[1 \cdot y + x \cdot 1 \frac{dy}{dx}\right] - 2y \frac{dy}{dx} = 0$ $\frac{dy}{dx} = \frac{-ye^{xy}}{xe^{xy} - 2y}$ $\frac{dy}{dx} = \frac{-2e^{1}}{xe^{xy} - 2y} = \frac{-4e}{e^{-8}}$ $\frac{dy}{dx} = \frac{-2e^{1}}{xe^{1} - 2z} = \frac{-4e}{e^{-8}}$ - **3.** If $y^3 + y = x^2$ , then $\frac{dy}{dx} =$ - (A) 0 (B) $\frac{x}{2}$ (C) $\frac{2x}{3v^2}$ (D) $2x 3y^2$ $$\frac{dY}{dX} = \frac{2x}{3y^2+1}$$ | 4. | The top of a 15-foot-long ladder rests against a vertical wall with the bottom of the ladder on level ground, as | |----|--------------------------------------------------------------------------------------------------------------------| | | shown below. The ladder is sliding down the wall at a constant rate of 2 feet per second. At what rate, in radians | | | per second, is the acute angle between the bottom of the ladder and the ground changing at the instant the bottom | | | of the ladder is 9 feet from the base of the wall? | $$\frac{dy}{dt} = -2ft \text{ set}$$ $$\frac{d\theta}{dt} \text{$$ $$\begin{array}{ccc} (C) & -\frac{1}{25} & (C) & -\frac{1}{25} & (C) (C)$$ $$\cos \theta \cdot \frac{d\theta}{dt} = \frac{1}{15} \cdot \frac{dy}{dt}$$ $$\frac{9}{15} \cdot \frac{dv}{dt} = \frac{1}{15} \cdot \frac{1}{9}$$ $$\frac{d\theta}{dt} = \frac{1}{15} \cdot \frac{1}{9}$$ $$\frac{d\theta}{dt} = \frac{2}{9}$$ 5. Which of the following is an equation of the line tangent to the graph of $x^2 - 3xy = 10$ at the point (1, -3)? (A) $$y + 3 = -11(x - 1)$$ C656= 9 (B) $$y+3=-\frac{7}{3}(x-1)$$ (C) $$y + 3 = \frac{1}{3}(x - 1)$$ (D) $$y + 3 = \frac{7}{3}(x - 1)$$ $$(E) y + 3 = \frac{11}{3}(x - 1)$$ 一一型之次 6. If $$\ln(2x + y) = x + 1$$ , then $\frac{dy}{dx} =$ (A) $$-2$$ (B) $2x + y - 2$ (C) $2x + y$ (D) $4x + 2y - 2$ (E) $y - \frac{y}{x}$ (C) $$2x + y$$ (D) $$4x + 2y - 2$$ (E) $$y - \frac{y}{x}$$ $$\frac{3x+A}{3+\frac{9x}{4A}}=1$$ 7. The volume of a sphere is decreasing at a constant rate of 3 cubic centimeters per second. At the instant when the radius of the sphere is decreasing at a rate of 0.25 centimeter per second, what is the radius of the sphere? (The volume V of a sphere with radius r is $V = \frac{4}{3}\pi r^3$ .) - (B) 0.244 cm - (D) 0.489 cm - (E) 0.977 cm $$\frac{dV}{dt} = -3 \frac{3}{cn^3/see}$$ $$\frac{dV}{dt} = -\frac{1}{4} \frac{3}{cn^3/see}$$ $$\frac{dV}{dt} = -\frac{1}{4} \frac{3}{cn^3/see}$$ $$\frac{dV}{dt} = -\frac{3}{4} \frac{3}{nr^2} \frac{dr}{dt}$$ $$-3 = 41r \cdot r^2 \cdot -\frac{1}{4}$$ $$-3 = -r^2 \cdot -\frac{1}{4}$$ - 8. If $(x + 2y) \cdot \frac{dy}{dx} = 2x - y$ , what is the value of $\frac{d^2y}{dx^2}$ at the point (3,0)? - (B) 0 - (C) 2 (D) $\frac{10}{3}$ - (E) Undefined $$\frac{dy}{dx} = \frac{2x-y}{x+2y} \implies \frac{dy}{dx} \left( 3_{10} \right) = \frac{2(3)-0}{3+2(0)} = \frac{6}{3} = 2$$ - $\frac{d^2y}{dy^2} = \frac{\frac{d}{dx}(2x-y)(x+2y) (2x-y)\frac{d}{dx}(x+2y)}{(x+2y)^2}$ - $\frac{d^{2}Y}{dx^{2}} = \frac{(2-\frac{2}{3})(x+2y) (2x-y) \cdot (1+2\frac{2}{3})}{(x+2y)^{2}} = \frac{(2-\frac{2}{3})(3+2(0)) (2\cdot3-0)(1+2(2))}{(3+2(0))^{2}} = \frac{0-6\cdot5}{3^{2}} = \frac{-30}{9} = \frac{-10}{3}$ - 9. A person whose height is 6 feet is walking away from the base of a streetlight along a straight path at a rate of 4 feet per second. If the height of the streetlight is 15 feet, what is the rate at which the person's shadow is lengthening? - (A) 1.5 ft/sec - (D) 6 ft/sec - (E) 10 ft/sec - (A) 1.5 ft/sec (B) 2.667 ft/sec (C) 3.75 ft/sec $\frac{d\chi_1}{dt} = 4ft/gc$ $\frac{15}{6} = \frac{\chi_1 + \chi_2}{\chi_3}$ $15\chi_2 = 6\chi_1 + 6\chi_2$ $9\chi_2 = 6\chi_1$ - d qx = d 6x1 - 9 .dxz = 6. dx1 | 10. | An ice sculpture in the form of a sphere melts in such a way that it maintains its spherical Loc | |-----|------------------------------------------------------------------------------------------------------| | | shape. The volume of the sphere is decreasing at a constant rate of $2\pi$ cubic meters per hour. At | | | what rate, in square meters per hour, is the surface area of the sphere decreasing at the moment | | | when the radius is 5 meters? (Note: For a sphere of radius r, the surface area is $4\pi r^2$ and the | | | volume is $\frac{4}{3}\pi r^3$ .) $dV = \frac{4}{3}\pi r^3$ | (B) $$40\pi$$ (C) $80\pi^2$ FIND $\frac{dA}{dt}$ = $4\pi r^2 \cdot \frac{dr}{dt}$ $\frac{dA}{dt} = 8\pi r \cdot \frac{ds}{dt}$ (D) 100π A hemispherical water tank, shown above, has a radius of 6 meters and is losing water. The area of the surface of the water is $A = 12\pi h - \pi h^2$ square meters, where h is the depth, in meters, of the water in the tank. When h = 3 meters, the depth of the water is decreasing at a rate of $\frac{1}{2}$ meter per minute. At that instant, what is the rate at which the area of the water's surface is decreasing with respect to time? (A) $$3\pi$$ square meters per minute - $6\pi$ square meters per minute - $9\pi$ square meters per minute (D) $$27\pi$$ square meters per minute $$\frac{dA}{dt} = 12\pi \cdot \frac{dh}{dt} - 2\pi h \cdot \frac{dh}{dt}$$ $$\frac{dA}{dt} = 12\pi \cdot (\frac{1}{2}) - 2\pi (3) (-\frac{1}{2})$$ $$= -Ce(\tau + 3\pi)$$ $$= -3\pi$$