Free Response Practice #1 Calculator Permitted

Consider the function $h(x) = \frac{-2x - \sin x}{x - 1}$ to answer the following questions.

a. Find $\lim_{x\to 1^+} h(x)$. Show your numerical analysis that leads to your answer and explain what this result implies graphically about h(x) at x = 1.

$$\lim_{x\to 1^+} \frac{-2x-\sin(x)}{x-1} = -\infty$$

$$\frac{\chi}{\chi} = \frac{-3 \times -\sin(x)}{\chi - 1}$$

$$\frac{|\ln \frac{-2x-3\pi (r)}{x-1}}{x^{2}} = -3$$

$$\frac{-2x-\sin(x)}{x-1}$$

$$\frac{x}{x-1}$$

$$\frac{-3x-\sin(x)}{x-1}$$

$$\frac{x}{x-1}$$

b. Find $\lim_{\substack{x \to \frac{\pi}{2}}} [h(x) \cdot (2x - 2)]$. Show your analysis.

$$\lim_{x \to \frac{\pi}{2}} \left(\frac{-2x - \sin x}{x + 2} \right)$$

$$= \lim_{x \to \frac{\pi}{2}} \left(-4x - 2\sin x \right)$$

$$= -4 \left(\frac{\pi}{2} \right) - 2\sin \left(\frac{\pi}{2} \right)$$

$$= -4 \left(\frac{\pi}{2} \right) - 2\sin \left(\frac{\pi}{2} \right)$$

$$= -3\pi - 2(1)$$

$$= -2\pi - 2(1)$$

Explain why the Intermediate Value Theorem guarantees a value of c on the interval [1.5, 2.5] such that h(c) = -4. Then, find c.

II.
$$h(15) = -7.995$$

 $h(2.5) = -3.732$

Free Response Practice #2 Calculator NOT Permitted

Graph of
$$g(x)$$

$$f(x) = \begin{cases} ax + 3, & x < -3\\ x^2 - 3x, & -3 \le x < 2\\ bx - 5, & x \ge 2 \end{cases}$$

Pictured above is the graph of a function g(x) and the equation of a piece-wise defined function f(x). Answer the following. a. Find $\lim_{x\to 1^+} [2g(x) - f(x) \cdot \cos(\pi x)]$. Show your work applying the properties of limits.

=
$$2 \lim_{x \to 1^+} 9(x) - \lim_{x \to 1^+} f(x) \cdot \lim_{x \to 1^+} \cos(\pi x)$$

= $2(2) - (1^2 - 3(1)) \cos(\pi(1))$
= $4 - (-2)(-1)$
= $4 - 2$
= $2 - 2$

On its domain, what is one value of x at which g(x) is discontinuous? Use the three part definition of continuity to explain why g(x) is discontinuous at this value.

For what value(s) of a and b, if they exist, would the function f(x) be continuous everywhere? Justify your answer using limits.

$$f(x) = \begin{cases} ax + 3, & x < -3\\ x^2 - 3x, & -3 \le x < 2\\ bx - 5, & x \ge 2 \end{cases}$$

$$a(ax+3) = \lim_{x \to -3x} (x^{2}-3x)$$

$$-3 = (x^{2}-3)^{2} - 3(-3)^{2} - 3(-3)$$

$$-3a+3 = 9+9$$

$$-3a+3 = 18$$

$$-3a=15$$

$$a = -5$$

using limits.

$$f(x) = \begin{cases} ax + 3, & x < -3 \\ x^2 - 3x, & -3 \le x < 2 \\ bx - 5, & x \ge 2 \end{cases}$$

$$\begin{vmatrix} a(-3) + 3 = (-3)^2 - 3(-3) \\ -3a + 3 = (8) \end{vmatrix}$$

$$\begin{vmatrix} -3a + 3 = (8) \\ -3a = 15 \end{vmatrix}$$

$$\begin{vmatrix} -3a = 15 \\ -3a = 4 \end{vmatrix}$$

$$\begin{vmatrix} -3a = 15 \\ -3a = 4 \end{vmatrix}$$