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Free Response Practice #1 Calculator Permitted

Consider the function A(x) = _Zz_jlmx to answer the following questions.
a. Find lir{1+ h(x). Show your numerical analysis that leads to your answer and explain what this result implies
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b.  Find lim[A(x) - (2x — 2)]. Show your analysis.
xX-=
2

[im (_—Z;nx 2 (¥) >

T
RSdi 3

y b
'
V v
C)Cl
o
U\)
o
-

c.
Then, find c.
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Explain why the Intermediate Value Theorem guarantees a value of ¢ on the interval [1.5, 2.5] such that A(c) = —4.
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Free Response Practice #2 Calculator NOT Permitted

¥

Graph of g(x)

ax+3, x<-3
AR flx)=4{x?—-3x, -3<x<2
a bx—5 x=2

Pictured above is the graph of a function g(x) and the equation of a piece-wise defined function f{x). Answer the following.
a. Find lir{l+ [2g(x) — f(x) - cosé[ x). Show your work applying the properties of limits.
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b. On its domain, what is one value of x at which g(x) is discontinuous? Use the three part definition of continuity to
explain why g(x) is discontinuous at this value.
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c. For what value(s) of @ and b, if they exist, would the function f{x) be continuous everywhere? Justify your answer
using limits.
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