Notes 2.2 Understanding the Derivative from a Graphical and Numerical Approach

So far, our understanding of the derivative is that it represents the slope of the tangent line drawn to a curve at a point.

Complete the table below, estimating the value of $f^{\prime}(x)$ at the indicated x values by drawing a tangent line and estimating its slope.

Based on what you observed in the table on the previous page, what inferences can you make about the value of the derivative, $f^{\prime}(x)$, and the behavior of the graph of the function, $f(x)$?
AT any value where $x=a$

- If $f(a)^{\prime}>0$, then the graph is increasing of $x=a$
- If $f(a)^{\prime} \angle U$, then the graph is decreasing at $x=a$
- If $f(a)^{\prime}=0$, then the graph has a min or max at $x=a$
- $f(a)$ is a rel max if $f^{\prime}(x)>0$ on left and $f^{\prime}(x)<0$ on right of $x=a$.
- $f(a)$ is a rel min if $f^{\prime}(x)<0$ on left and $f^{\prime}(x)>0$ on roget of $x=a$.

Numerically, the value of the derivative at a point can be estimated by finding the slope of the secant line passing through two points on the graph on either side of the point for which the derivative is being estimated.

\boldsymbol{x}	-3	0	1	4	6	10
$f(x)$	2	1	-3	0	-7	2

The graph of a function, $g(x)$, is pictured to the right. Identify the following characteristics about the graph of the derivative, $g^{\prime}(x)$. Give a reason for your answers.

The intervals) where $g^{\prime}(x)<0$	$g^{\prime}(x)<0$ on $(-4,-2) \sim(1, \infty)$
because $g(x)$ is decreasing.	
The interval(s) where $g^{\prime}(x)>0$	$g^{\prime}(x)>0$ on $(-\infty,-4) u(-2,1)$ because $g(x)$ is increasing
The values of x where $g^{\prime}(x)=0$	$g^{\prime}(x)=0$ when $x=-4,-2$, and 1 because $g(x)$ has a relative min or max

Definition of the Normal Line - The normal line is the line that is perpendicular to the tangent line at the point of tangency.

Pictured to the right is the graph of $f(x)=-\frac{1}{2}(x+1)^{2}+4$.
(1)
(2)

Draw the tangent line to the graph of $f(x)$ at $x=1$. Then, estimate the value of $f^{\prime}(1)$.

$$
\text { (2) } f^{\prime}(1) \approx-2
$$

(3)

Find the equation of the tangent line to the graph of $f(x)$ at $x=1$.

$$
\begin{array}{r}
\frac{P 0 T}{(1,2)} \frac{S_{0} T}{f^{\prime}(1) \approx-2} \frac{\text { Tangent line }}{y-y_{1}=m\left(x-x_{1}\right)} \\
\text { (3) } y-2=-2(x-1)
\end{array}
$$

Draw this line and find the equation of the normal line.

$$
\frac{P_{0 T}}{(1,2)} \frac{\text { SoN }}{f^{\prime}(1) \approx \frac{1}{2}} \quad \begin{array}{r}
\text { Normal line } \\
y-y_{1}=m\left(x-x_{1}\right) \\
y-2=\frac{1}{2}(x-1)
\end{array}
$$

The graph of the derivative, $k^{\prime}(x)$, of a function $h(x)$ is pictured. dentify the following characteristics about the graph of $h(x)$ and give a reason for your responses.

(Eton)
MIN

