\qquad

Topic: 1.9 Connecting Multiple Representations of Limits

Answer each of the following problems in this Four Corner Activity.

$$
\begin{aligned}
& f(x)=x^{2}-3 x-28 \\
& g(x)=x+4 \\
& h(x)=-2|x+4|
\end{aligned}
$$

Use the functions above to evaluate the following limits. If a limit does not exist, write "die."

1. $\lim _{x \rightarrow-4} \frac{f(x)}{g(x)}=\lim _{x \rightarrow-4} \frac{(x+y)(x-7)}{x+4}=-4-7=-11$
2. $\lim _{x \rightarrow 7} \frac{g(x)}{f(x)}=\lim _{x \rightarrow 7} \frac{x^{+4}}{(x-4)(x-7)}=\lim _{x \rightarrow 7} \frac{1}{x-7}=\infty$ or $-\infty$
3. $\lim _{x \rightarrow-4^{+}} \frac{g(x)}{h(x)}=\lim _{x \rightarrow-y^{+}} \frac{x+y}{-2|x+y|}=\lim _{x \rightarrow-4^{+}} \frac{1}{-2}=-\frac{1}{2}$

Topic:

Sketch a graph that meets the
following guidelines.

1. $\lim _{x \rightarrow 1^{-}} g(x)=2, \lim _{x \rightarrow 1^{+}} g(x)=-1, g(1)=0$

$$
\lim _{x \rightarrow 2^{-}} h(x)=-\infty, \quad \lim _{x \rightarrow 2^{+}} h(x)=+\infty
$$

2.

$\lim _{x \rightarrow-\infty} h(x)=2, \quad \lim _{x \rightarrow \infty} h(x)=-2$

The graph of $f(x)$, shown above, has a vertical asymptote at $x=6$. Use the graph to evaluate the following limits. If a limit does not exist, write die.

1. $\lim _{x \rightarrow 2} f(x)=-2$
2. $\lim _{x \rightarrow-1} f(x)$ due
3. $\lim _{x \rightarrow-1^{-}} f(x)=-2$ 4. $\lim _{x \rightarrow 6} f(x)$ due

Limits

1. Which limit from the upper right corner does not exist for the same reason as Problem 2 on the upper left corner?

$$
\# c
$$

2. Sketch a graph of the limit described in the first problem from the top left corner.

3. Using Problem 1 from the bottom left corner, explain the difference between finding $g(1)$ and $\lim _{x \rightarrow 1} g(x)$.

- $g(1)$ is finding the y-value when $x=1$

