

1. The function g is defined on the closed interval $[-4,8]$. The graph of g consists of two linear pieces and a semicircle, as shown in the figure above. Let f be the function defined by $f(x)=3 x+\int_{0}^{x} g(t) d t$
(a) Find $f(7)$ and $f^{\prime}(x)$
(b) Find the value of x in the closed interval $[-4,3]$ at which f attains its maximum value. Justify your answer.
(c) For each of $\lim _{x \rightarrow 0^{-}} g^{\prime}(x)$ and $\lim _{x \rightarrow 0^{+}} g^{\prime}(x)$, find the value or state that it does not exist.
(d) Find $\lim _{x \rightarrow-2} \frac{f(x)+7}{e^{3 x+6}-1}$
\qquad
2. Unless otherwise specified, the domain of a function f is assumed to be the set of all real numbers x for which $f(x)$ is a real number.

$$
f(x)=\left\{\begin{array}{cc}
\sqrt{9-x^{2}} & -3 \leq x \leq 0 \\
-x+3 \cos \left(\frac{\pi x}{2}\right) & 0<x \leq 4
\end{array}\right.
$$

Let f be the function defined above.
(a) Find the average rate of change of f on the interval $-3 \leq x \leq 4$.
(b) Write an equation for the line tangent to the graph of f at $x=3$
(c) Find the average value of f on the interval $-3 \leq x \leq 4$ (Calculator permitted for this part)
(d) Must there be a value of x at which $f(x)$ attains an absolute maximum on the closed interval $-3 \leq x \leq 4$? Justify your answer.

