\qquad

1. The function g is defined on the closed interval $[-4,8]$. The graph of g consists of two linear pieces and a semicircle, as shown in the figure above. Let f be the function defined by $f(x)=3 x+\int_{0}^{x} g(t) d t$
(a) Find $f(7)$ and $f^{\prime}(x)$

$$
\begin{aligned}
& f(1)=24-\frac{9}{2} \pi
\end{aligned}
$$

$$
\begin{aligned}
& f^{\prime}(x)=3+g(x) \cdot x^{\prime} \\
& f^{\prime}(x)=3+g(x) \\
& f^{\prime}(7)=3+g(7) \\
& f^{\prime}(7)=3+3(\text { (gog } \text { enough }) \\
& f^{\prime}(7)=6
\end{aligned}
$$

(b) Find the value of x in the closed interval $[-4,3]$ at which f attains its maximum value. Justify your answer.

$$
\begin{aligned}
f^{\prime}(x) & =3+g(x) \\
0 & =3+g(x) \\
-3 & =g(x) \\
\therefore x & =3 \text { is a critical value } \\
\tau_{x} & =3 \text { is also an end value. }
\end{aligned}
$$

$\therefore f^{\prime}>0$ on $[-4,3]$
$\therefore f$ is increasing on $[-4,3]$
$\therefore f(x)$ has a maximin $\alpha+x=3+1$

$$
f(x)=3 x+\int_{0}^{x} g(t) d t
$$

\qquad
(c) For each of $\lim _{x \rightarrow 0^{-}} g^{\prime}(x)$ and $\lim _{x \rightarrow 0^{+}} g^{\prime}(x)$, find the value or state that it does not exist.

$$
\lim _{x \rightarrow 0^{-}} g^{\prime}(x)=-\frac{1}{2}+1
$$

$$
x \rightarrow 0^{-} \text {亿 what is the slope of } g(x) \text { from left of } 0 \text { ? }
$$

$$
\lim _{x \rightarrow 0^{+}} g^{\prime}(x) \text { does not existical target line) }
$$

$\uparrow_{\text {whet is th }} \therefore(x)$ from eft of O ?
(d) Find $\lim _{x \rightarrow-2} \frac{f(x)+7}{e^{3 x+6}-1}$

$$
\begin{aligned}
\lim _{x \rightarrow-2}(f(x)+7) & =\lim _{x \rightarrow-2}\left(3 x+\int_{0}^{x} g(t) d t+7\right) \\
& =3(-2)+\int_{0}^{-2} g(t) d t+7 \\
& =-6-\int_{-2}^{0} g(t) d t+7 \\
& =-6-1+7 \\
& =0
\end{aligned}
$$

$$
\begin{aligned}
\lim _{x \rightarrow-2}\left(e^{3 x+6}-1\right) & =e^{3(-2)+6}-1 \\
& =e^{0}-1 \\
& =1-1 \\
& =0
\end{aligned}
$$

L'4opitals Rule

$$
\lim _{x \rightarrow-2} \frac{f(x)+7}{e^{3 x+6}-1}=\lim _{x \rightarrow-2} \frac{f^{\prime}(x)}{3 e^{3+6}}=\frac{f^{\prime}(-2)}{3 e^{3(-2)+6}}=\frac{3+g(-2)}{3 e^{e}}=\frac{3+1}{3 \cdot 1}=\frac{4}{3}
$$

\qquad
NO CALCULATOR IS ALLOWED FOR THIS QUESTION.
2. Unless otherwise specified, the domain of a function f is assumed to be the set of all real numbers x for which $f(x)$ is a real number.

$$
f(x)=\left\{\begin{array}{cc}
\sqrt{9-x^{2}} & -3 \leq x \leq 0 \\
-x+3 \cos \left(\frac{\pi x}{2}\right) & 0<x \leq 4
\end{array}\right.
$$

Let f be the function defined above.
(a) Find the average rate of change of f on the interval $-3 \leq x \leq 4$.

$$
\begin{aligned}
& f(-3)-f(4) \text { SIDE WORL (NOT Required) } \\
& \text { ARC }=\frac{f(-3)-f(4)}{-3-4} \\
& =\frac{0-(-1)}{-7}+1 \\
& A R C=\frac{1}{-7} \quad 3 \\
& \begin{aligned}
f(-3) & =\sqrt{a-(-3)^{2}} \\
& =\sqrt{9-9} \\
& =\sqrt{0} \\
f(-3) & =0
\end{aligned} \\
& f(4)=-4+3 \cos \left(\pi-\frac{7}{2}\right) \\
& =-4+3 \cos (2 \pi) \\
& =-4+3 \cdot 1 \\
& f(4)=-1
\end{aligned}
$$

(b) Write an equation for the line tangent to the graph of f at $x=3$

PoT	SOT	Tangut line
$f(3)=-3+3 \cos \left(\frac{3}{2} \pi\right)$	$f^{\prime}(x)=-1-3 \sin \left(\frac{\pi}{2} x\right) \cdot \frac{\pi}{2}$	$y+3=\left(-1+\frac{3 \pi}{2}\right)(x-3)$
$f(3)=-3+3 \cdot 0$	$f^{\prime}(3)=-1-\frac{3 \pi}{2} \sin \left(\frac{3}{2} \pi\right)$	+1
$f(3)=-3$	(1) $\quad+1+\frac{3 \pi}{2}(-1)$	

\qquad
(c) Find the average value of f on the interval $-3 \leq x \leq 4$ (CALC for this part)

Averag Value $=\frac{1}{4 \cdot(-3)} \int_{-3}^{4} f(x) d x$

$$
\begin{aligned}
& =\frac{1}{7}\left[\int_{-3}^{0} f(x) d x+\int_{0}^{4} f(x) d x\right] \\
& =\frac{1}{7}\left[\frac{9 \pi}{4}-8\right]+1
\end{aligned}
$$

(d) Must there be a value of x at which $f(x)$ attains an absolute maximum on the closed interval $-3 \leq x \leq 4$? Justify your answer.
I) $f(0)=3 \quad \therefore f(x)$ is defined at $x=0$

III $f(0)=\lim _{x \rightarrow 0} f(x)$
$\therefore f(x)$ is contmuas at $x=0$

$\therefore f(x)$ is continuous on $[-4,3]$
:- The Extreme value Theorem guaventers f attains an absolute maximum on $[-3,4]$

