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UNIT 4 REVIEW- Contextual Applications of Differentiation

Follow the directions to answer each of the following problems. Only use your calculator when a problem displays
the calculator icon.

Topic 4.1 & 4.3 Interpreting the Meaning of a Derivative in Context;
Rates of Change in Applied Contexts Other Than Motion b
yo

1. Eager rock fans enter a line to buy tickets to see the renowned band, Sir Isaac & the Newtopeﬁte

modeled by the function given b@) =512.7¢"""" where E(t) is measured in people per m@nd tis
measured in minutes for the interval 0 <7 <30. Find £'(22) and using correct units, interpret its meaning in

the context of the problem.
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Topic 4.2 Straight Line Motion: Connecting Position, Velocity and Acceleration

2. The graph below shows the velocity, v(¢), of a particle moving along the x-axis and can be defined by a

continuous linear piecewise-defined function over the interval 0 <¢ <9,
Note that v'(¢) =0 on 3< x <4.
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a. Over which time interval(s) does the particle move to the left? Justify your answer.
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b. Over which time interval(s) is the particle speeding up? Justify your answer.
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c. Over which time interval(s) is the particle’s speed decreasing? Justify your answer.
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Topics 4.4 & 4.5: Related Rates

dy dx
3. 1fJx+y=6 and — =2, find — when x=4.
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4. AKkite is flying at a height of 40 ft. A child is flying it so that it is moving horizontally at a rate of 3 ft/sec.
If the string is taut, at whaffrate is the string being let out when the length of the string released is 50 ft?
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5. A spherical snowball is being made so that its volume is increasing at the rate of 8 cu. ft/min: Find the rate of
change at which the radius is increasing when the snowball is 4 ft+4rrch eteE; 29 ,p.}

4
The volume of a sphereis V' = Eﬂr3.
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6. Sand is being dropped onto a conical pile at a rate of 10 cubic meters per minute. If the height of the pile always
twice the base radius, at what rate is the height increasing when the pile is 8 m high?

The volume of a cone is V=§7rr2h. '\/'—' ‘3&’)’]\(_%3’2)\
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7. The volume of a cube is increasing by 10 cm3/min. Find the rate the surface area is increasing when the side of the
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8. Qil is leaking from a pipeline on the surface of a lake and forms an oil slick whose volume
increases at a constant rate of 2000 cubic centimeters per minute. The oil slick takes the
form of a right circular cylinder with both its radius and height changing with time.

(Note: The volume V of a right circular cylinder with radius r and height h is given by
V=nr'h )

a.) At the instant when the radius of the oil slick is 100 centimeters and the height is 0.5 centimeter, the radius is

increasing at the rate of 2.5 centimeters per minute. At this instant, what is the rate of change of the height of
the oil slick with respect to time, in centimeters per minute?
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b.) A recovery device arrives on the scene and begins removing oil. The rate at which oil is removed R(t) = 400\/;

cubic centimeters per minute, where t is the time in minutes since the device began working. Qil continues to leak
at a rate of 2000 cubic centimeters per minute. Find the time t when the oil slick is not changing volume.
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Topic 4.6: Linear Approximation

. Use the tangént line appfoximationfor f(x) :\/; at x #64 to approxi

Name

page 82

. Let g be a function given by g(x)=x- f(x). If f(—=1)=3and f'(—1)=-2, use the tangent line to g at

x =—1 to approximate g(—0.9).
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10 Given a function, f£(x), the linear approximation for f(a+0.1) would be given by

(A) f(a)+10f"(a) (a)+%
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Topic 4.7: Indeterminate Forms & L’Hospital’s Rule
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(2 #4. The function fis continuous and twice-differentiable for all values x, f(0)=1, f"(0)=1, and f"(0) =2. What is
The following limit? [
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% #5. Find the following limit: lim———. Be sure to state any conditions that must be met.
20 sint

— O\ L esPirn

(e""") -~ < 2120

Jiwm

ot
= ‘,'\M e L
Jtw LSMtB = sm(0)= O £ -0 CoS
2.0
£ >0 i e
COS(O)
= 2|

AP* Calculus AB Page 84



