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UNIT 4 REVIEW– Contextual Applications of Differentiation 
 
Follow the directions to answer each of the following problems.  Only use your calculator when a problem displays 
the calculator icon. 
 

Topic 4.1 & 4.3 Interpreting the Meaning of a Derivative in Context; 
                           Rates of Change in Applied Contexts Other Than Motion 
 
1.      Eager rock fans enter a line to buy tickets to see the renowned band, Sir Isaac & the Newtones at a rate 

modeled by the function given by 0.173( ) 512.7 tE t e  where E(t) is measured in people per minute and t is 
measured in minutes for the interval 0 30t  .  Find (22)E  and using correct units, interpret its meaning in 
the context of the problem. 

 
 
 
 
 
 

Topic 4.2 Straight Line Motion:  Connecting Position, Velocity and Acceleration 
 
2.  The graph below shows the velocity, ( )v t , of a particle moving along the x-axis and can be defined by  a 

continuous linear piecewise-defined function over the interval 0 9t  .   
     Note that '( ) 0 on 3 4.v t x    
 

                          
 
a.  Over which time interval(s) does the particle move to the left?  Justify your answer.    
 
 
 
 
b.  Over which time interval(s) is the particle speeding up?   Justify your answer.     
 
 
 
 
c.   Over which time interval(s) is the particle’s speed decreasing?   Justify your answer.   
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Topics 4.4 & 4.5:   Related Rates 

3.  If 6 yx and  ,2
dt
dy

 find 
dt
dx

 when 4x . 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4.  A kite is flying at a height of 40 ft. A child is flying it so that it is moving horizontally at a rate of 3 ft/sec.    
     If the string is taut, at what rate is the string being let out when the length of the string released is 50 ft? 
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5.  A spherical snowball is being made so that its volume is increasing at the rate of 8 cu. ft/min. Find the rate of 
change at which the radius is increasing when the snowball is 4 ft in diameter.   

      The volume of a sphere is 34 .
3

V r   

 
 
 
 
 
 

 
  
 
 
 
 
 
 
 
 
 
 
 

6.  Sand is being dropped onto a conical pile at a rate of 10 cubic meters per minute.  If the height of the pile   always 
twice the base radius, at what rate is the height increasing when the pile is 8 m high? 

   The volume of a cone is 21 .
3

V r h  
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7. The volume of a cube is increasing by 10 cm3/min. Find the rate the surface area is increasing when the side of the 
cube is 5 cm.  
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8. Oil is leaking from a pipeline on the surface of a lake and forms an oil slick whose volume 

increases at a constant rate of 2000 cubic centimeters per minute. The oil slick takes the 
form of a right circular cylinder with both its radius and height changing with time. 
(Note: The volume V of a right circular cylinder with radius r and height h is given by 

2V r h  .) 
 
    a.) At the instant when the radius of the oil slick is 100 centimeters and the height is 0.5 centimeter, the radius is 

increasing at the rate of 2.5 centimeters per minute. At this instant, what is the rate of change of the height of 
the oil slick with respect to time, in centimeters per minute? 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

b.) A recovery device arrives on the scene and begins removing oil. The rate at which oil is removed   400R t t  
cubic centimeters per minute, where t is the time in minutes since the device began working. Oil continues to leak 
at a rate of 2000 cubic centimeters per minute. Find the time t when the oil slick is not changing volume. 
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Topic 4.6:  Linear Approximation 
 
9.  Use the tangent line approximation for ( ) f x x  at 64x  to approximate 65 63 . 

(A)  0           (B)   
1

32
       

 

(C)  
1

16
        (D)  

1
8

      

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
10.  Let g be a function given by ( ) ( ). g x x f x    If ( 1) 3 f  and ( 1) 2   f , use the tangent line to g at     
       1 x  to approximate ( 0.9).g      

 
(A)  2.5        (B)   0.2        
 
(C)    1.8       (D)  3.5       
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11.  Given a function, ( )f x , the linear approximation for ( 0.1)f a  would be given by   

(A)  ( ) 10 ( )f a f a               (B)   ( )( )
10
f af a


        

(C)    ( 0.1) ( )f a f a         (D)   10 ( 0.1) ( )f a f a         
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
12. Find the error using the linear approximation of 2( ) (1 2 ) f x x at 1x   to approximate (0.9)f .  

 
(A)  0.04        (B)   0.6        
 

            (C)  0.16        (D)  0.64       
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Topic 4.7:  Indeterminate Forms & L’Hospital’s Rule 
 

13.  What is 21
lim ?

1

x

x

ex e
x




  

 
(A)  e            (B)   1        
 

            (C)  
4
e

          (D)  0       

 
 
 
14.  The function f is continuous and twice-differentiable for all values x, (0) 1, (0) 1,  and (0) 2.f f f     What is  
        The following limit? 

20

( ) 1lim
sin(2 ) 2x

f x x
x x x

 
 

 ? 

 
(A)  1            (B)   0          (C)  1           (D)  does not exist       

  
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

15.  Find the following limit: 
2

0

1lim .
sin

t

t

e
t


   Be sure to state any conditions that must be met.   

 
 
 

no 5,55
y 11 12 1 0

0
12 M

Here

Lf
2 cosLax 2x 2

L'Hosp'The

y o

f lx

f o

gyp
45in 2.0 2

2
4.0 2yffix1 fo 1 io
z

XO

13 M

Ii
eat 1 é 1 0 42 Hospital

lim Je't
to cost

ygysng.gg 2 e
O

Cosa

2


