Review

Period:

End of Unit 1 Review– Limits and Continuity

Lessons 1.10 through 1.16.

Reviews do NOT cover all material from the lessons but will hopefully remind you of key points. To be prepared, you should review all packets from Unit 1 (including the Mid-Unit Review).

1. If
$$f(x) = \frac{x+3}{x^2-2x-15}$$
, identify the type of each discontinuity and where it is located

$$f(x) = \frac{x+3}{(x-5)(x+3)}$$
Point descontinuity $\Theta = x=-3$
Infinite descontinuity $\Theta = x=-3$

Evaluate the limit.
7.
$$\lim_{x \to \infty} \sin\left(\frac{2+3\pi x^2}{2x^2}\right) \operatorname{sprangert Sere}_{\operatorname{vack}} = \frac{-3}{5-x^2} = \frac{-3}{(5-3)(5+n)} =$$

13. Identify all horizontal asymptotes of
$$f(x) = \frac{\sqrt{16x^6 + x^3 + 5x}}{5x^3 - 8x}$$
.

$$\lim_{x \to \infty} \frac{\sqrt{16x^{\circ}}}{5x^{3}} = \frac{4}{5} \qquad \begin{array}{c} \text{growing of Same} \\ \text{value} \\ \text{im} \quad \text{in} \quad \text{i$$

$$\lim_{x \to -\infty} \frac{\sqrt{16x^{\circ}}}{5x^{3}} = \frac{4}{-5} \qquad \begin{array}{c} \text{Symmetry of Sime} \\ \text{Value} \\ \therefore \text{ HACH } y = \frac{6}{5} \end{array}$$

Period:

Unit 2 Review – Differentiation: Definition & Fundamental Properties

Reviews do NOT cover all material from the lessons but will hopefully remind you of key points. To be prepared, you should review all packets from Unit 2.

Find the average rate of change of each function on the given interval. Use appropriate units if necessary.
1.
$$w(x) = \ln x; \quad 1 \le x \le 7$$

 $ABL = \frac{\ln (i) - \ln 7}{(-7)} = \frac{0 - \ln 7}{-\infty} = \frac{\ln 7}{6}$
3. Find the derivative of $y = 2x^2 + 3x - 1$ by using the definition of the derivative. $\lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$
 $\frac{dY}{dx} = \lim_{h \to 0} \frac{(2(x+h)^2 + 3(x+h) - 1) - (-2x^2 + 3x - 1)}{h} = \lim_{h \to 0} \frac{2(x^2 + 2hx + h^2) + 3x + 3h - i - 2x^2 - 3x + 1)}{h}$
 $= \lim_{h \to 0} \frac{2x^2 + 4hx + 3h^2 + 3x + 3i - i - 2x^2 - 3x + 1}{h} = \lim_{h \to 0} \frac{h(4x + 2h + 3)}{h}$

4. For the function h(t), h is the temperature of the oven in Fahrenheit, and t is the time measured in minutes.

a. Explain the meaning of the equation $h(15) = 420.^{\circ}F$ AT (S minutes, the over's tenp is 420°F min

b. Explain the meaning of the equation h'(43) = -11.

 Find the derivative of each function.

 5. $f(x) = 4 - \frac{1}{2x^2} = 4 - \frac{1}{2}x^{-2}$ 6. $g(x) = 3\sqrt{x} - \frac{6}{x^2} + 5\pi^3$ 7. $h(x) = 4e^x - 2\cos x$
 $S'(x) = +x^{-3}$ $S(x) = 3x^{1/2} - 6x^{-2x} - 5\pi^3$ $h'(x) = 4e^x - 2\cos x$
 $S'(x) = -\frac{1}{x^5}$ $\frac{d_9}{dx} = \frac{3}{2}x^{-1/2} + 10x^{-3}$ $h'(x) = 4e^x - 2\cos x$
 $\frac{d_9}{dx} = \frac{3}{2}x^{-1/2} - 6x^{-2x} - 5\pi^3$ $h'(x) = 4e^x - 2\cos x$
 $S'(x) = -\frac{1}{x^5}$ $\frac{d_9}{dx} = \frac{3}{2}x^{-1/2} + 10x^{-3}$ $h'(x) = 4e^x - 2\cos x$
 $\frac{d_9}{dx} = -\frac{3}{2}x^{-1/2} - 6x^{-2x} - 5\pi^3$ $\frac{1}{y}(x) = 4e^x + 2\sin x$ $h'(x) = 4e^x + 2\sin x$

 8. $s(t) = t^2 sin(t)$ $\frac{3}{2}x^{-1/2} + 10x^{-3}$ $\frac{1}{y}(x) = 3\sqrt{t} \ln t$ $\frac{1}{y}(x) = -\frac{3\sqrt{t}}{t^2} + 10x^{-3}$
 $S'(t) = 2t^2 sin(t)$ $9. \quad d(t) = 3\sqrt{t} \ln t$ $d'(t) = 3\sqrt{t} \ln t$ $d'(t) = \frac{3\sqrt{t}}{2\sqrt{t}} + \frac{3}{\sqrt{t}}$

10.
$$y = \frac{1}{x} - \sec x = 4x^{-1}$$

 $y' = -4x^{-1} - \sec(5)^{\frac{1}{2}} \sin(5)$
 $y' = \frac{-4}{x^{-2}} - \sec(5)^{\frac{1}{2}} \sin(5)$
 $y' = \frac{-4}{x^{-2}} - \sec(5)^{\frac{1}{2}} \sin(5)$
 $y' = \frac{-4}{x^{-2}} - \frac{1}{x^{-2}} - \frac$

t seconds	2	13		60	180	500	
d(t) feet	10	81		412	808	2,105	
			l				-

$$\frac{f_{\text{feet}}}{d'(120)} \approx \frac{d(40) - d(180)}{60 - (80)} \approx \frac{412}{60 - (80)} + \frac{412}{$$

19. Is the function differentiable at
$$x = 2$$
?

$$f(x) = \begin{cases} 3x - 3x^2 - 5, & x < 2 \\ 7 - 9x, & x \ge 2 \end{cases}$$

$$\lim_{x \ge 3^{-1}} f(x) = \begin{cases} 3x - 3x^2 - 5, & x < 2 \\ 7 - 9x, & x \ge 2 \end{cases}$$

$$\lim_{x \ge 3^{-1}} f(x) = 3(3) - 3(3)^2 - 5 = -11 \\ \lim_{x \ge 3^{-1}} f(x) = 7 - 9(3) = -11 \\ \lim_{x \ge 3^{-1}} f(x) = 7 - 9(3) = -11 \\ \lim_{x \ge 3^{-1}} f(x) = 7 - 9(3) = -11 \\ \lim_{x \ge 3^{-1}} f(x) = 7 - 9(3) = -11 \\ \lim_{x \ge 3^{-1}} f(x) = -11 = \lim_{x \ge 3^{-1}} f(x) \\ \lim_{x \ge 3^{-1}} f(x) = -11 = -11 = -11 = -11 = -11 = -11 = -11 = -11 = -11 = -11 = -11 = -$$

20. What values of a and b would make the function differentiable at
$$x = 4$$
?

$$f(x) = \begin{cases} a\sqrt{x} + bx^{2} - 1, & x < 4\\ \frac{16}{x} + bx, & x \ge 4 \end{cases}$$

$$f(x) = \begin{cases} a\sqrt{x} + bx^{2} - 1, & x < 4\\ \frac{16}{x} + bx, & x \ge 4 \end{cases}$$

$$f(x) = \begin{cases} a\sqrt{x} + bx^{2} - 1, & x < 4\\ \frac{16}{x} + bx, & x \ge 4 \end{cases}$$

$$f(x) = \begin{cases} a\sqrt{x} + bx^{2} - 1, & x < 4\\ \frac{16}{x} + bx, & x \ge 4 \end{cases}$$

$$f(x) = \begin{cases} a\sqrt{x} + bx, & x \ge 4 \end{cases}$$

$$f(x) = \begin{cases} a\sqrt{x} + bx, & x \ge 4 \end{cases}$$

$$f(x) = \begin{cases} a\sqrt{x} + bx, & x \ge 4 \end{cases}$$

$$f(x) = \begin{cases} a\sqrt{x} + bx, & x \ge 4 \end{cases}$$

$$f(x) = \begin{cases} a\sqrt{x} + bx, & x \ge 4 \end{cases}$$

$$f(x) = \begin{cases} a\sqrt{x} + bx, & x \ge 4 \end{cases}$$

$$f(x) = \begin{cases} a\sqrt{x} + bx, & x \ge 4 \end{cases}$$

$$f(x) = \begin{cases} a\sqrt{x} + bx, & x \ge 4 \end{cases}$$

$$f(x) = \begin{cases} a\sqrt{x} + bx, & x \ge 4 \end{cases}$$

$$f(x) = \begin{cases} a\sqrt{x} + bx, & x \ge 4 \end{cases}$$

$$f(x) = \begin{cases} a\sqrt{x} + bx, & x \ge 4 \end{cases}$$

$$f(x) = \begin{cases} a\sqrt{x} + bx, & x \ge 4 \end{cases}$$

$$f(x) = \begin{cases} a\sqrt{x} + bx, & x \ge 4 \end{cases}$$

$$f(x) = \begin{cases} a\sqrt{x} + bx, & x \ge 4 \end{cases}$$

$$f(x) = \begin{cases} a\sqrt{x} + bx, & x \ge 4 \end{cases}$$

$$f(x) = \begin{cases} a\sqrt{x} + bx, & x \ge 4 \end{cases}$$

$$f(x) = \begin{cases} a\sqrt{x} + bx, & x \ge 4 \end{cases}$$

$$f(x) = \begin{cases} a\sqrt{x} + bx, & x \ge 4 \end{cases}$$

$$f(x) = \begin{cases} a\sqrt{x} + bx, & x \ge 4 \end{cases}$$

$$f(x) = \begin{cases} a\sqrt{x} + bx, & x \ge 4 \end{cases}$$

$$f(x) = \begin{cases} a\sqrt{x} + bx, & x \ge 4 \end{cases}$$

$$f(x) = \begin{cases} a\sqrt{x} + bx, & x \ge 4 \end{cases}$$

$$f(x) = \begin{cases} a\sqrt{x} + bx, & x \ge 4 \end{cases}$$

$$f(x) = \begin{cases} a\sqrt{x} + bx, & x \ge 4 \end{cases}$$

$$f(x) = \begin{cases} a\sqrt{x} + bx, & x \ge 4 \end{cases}$$

$$f(x) = \begin{cases} a\sqrt{x} + bx, & x \ge 4 \end{cases}$$

$$f(x) = \begin{cases} a\sqrt{x} + bx, & x \ge 4 \end{cases}$$

$$f(x) = \begin{cases} a\sqrt{x} + bx, & x \ge 4 \end{bmatrix}$$

$$f(x) = \begin{cases} a\sqrt{x} + bx, & x \ge 4 \end{bmatrix}$$

$$f(x) = \begin{cases} a\sqrt{x} + bx, & x \ge 4 \end{bmatrix}$$

$$f(x) = \begin{cases} a\sqrt{x} + bx, & x \ge 4 \end{bmatrix}$$

$$f(x) = \begin{cases} a\sqrt{x} + bx, & x = -1 + b \\ ax = -1 - 7b \\ a$$

Unit 3 REVIEW – Composite, Implicit, and Inverse Functions

Reviews do NOT cover all material from the lessons but should remind you of key points. To be prepared, you should review all packets from Unit 3.

Find the derivative.	`
1. $h(x) = \cos^2(4x) = \int_{x \to x} \int_{x$	2. $y = \ln \sqrt{x+3} = \ln \left[\left(x+3 \right)^{\frac{1}{2}} \right]$
$h'(x) = 2 \left[\cos(4x) \right] \cdot \left(-\sin(4x) \right) \cdot 4$ $Link Link Link$	$\gamma' = \frac{1}{(x+3)^{1/2}} \cdot \frac{1}{2} (x+3)^{\frac{1}{2}} (1)$
$h'(x) = -8 \cos(4x) \sin(4x)$	$\gamma' = \frac{1}{2 (x+3)^{1/2} (x+3)^{1/2}}$
	$\gamma = 2(\kappa+3)$
3. $x^2 + 2y^5 = 10xy$ Assume with respect to x?	4. $y = \csc^{-1}(x^3)$
$2x + 10y^4 \frac{dy}{dx} = 10.y + 10x \frac{dy}{dx}$	$\frac{dY}{dx} = \frac{1}{ x^3 \sqrt{(x^3)^2 - 1}} \cdot (3x^2)$
$\frac{dY}{dx} \left(10y^4 - 10y \right) = 10y - 3x$	$= \frac{3}{ \chi \sqrt{\chi^{\nu} - 1}}$
$\frac{dY}{dx} = \frac{roy - bx}{roy - rox}$	
For each problem, let f and g be differentiable funct	ions where $g(x) = f^{-1}(x)$ for all x.
5. $f(6) = -1$, $f(4) = -2$, $f'(6) = 3$, and $f'(4) = 7$. What is the value of $g'(-1)$?	6. Let f be the function defined by $f(x) = x^3 + 3x + 1$. Let $g(x) = f^{-1}(x)$, where g(-3) = -1. What is the value of $g'(-3)$?
$\frac{f'(x)}{f'(x)-g(x)}$	£ 5-1=g
$(2i^{-1}), m=3$ $(-1,6), m=\frac{1}{3}$	$ (-3,-1), m = \frac{1}{6} $
	F, (x) = 343+3
	$F'(-1) = 3(-1)^{2} + 3$
	- 50

Find $\frac{d^2y}{dx^2}$ based on the given information.	
$7. y = x^5 - e^{4x}$	$8. y = y^2 + x$
$\frac{d u}{d x} = 5 x^{u} - e^{u x} (u)$	$\frac{\partial Y}{\partial x} = 2 Y \frac{\partial Y}{\partial x} + 1$
$\frac{d^{2}Y}{dx^{2}} = 20x^{2} - 4e^{4x} (4)$	$\frac{dY}{dx} - 2Y \frac{dY}{dx} = 1$
	$\frac{dY}{dY}(1-2y)=1$
	$\frac{dY}{dX} = \frac{1}{1-2Y} = \frac{1}{(1-2Y)^{-1}}$
	$\frac{\partial x_{1}}{\partial y} = - (1-x_{1})_{-3}(-3) + \frac{\partial x_{1}}{\partial y}$
	$\frac{d^2\gamma}{dx^2} = \frac{2}{(l-2\gamma)^3} \cdot \frac{1}{l-2\gamma}$
	$\frac{d^{1}Y}{dx^{2}} = \frac{2}{(1-2x)^{5}}$
0 Find the equation of the tangent line	$d^2 u (\pi, 1)$
9. Find the equation of the tangent line. $x^2 + 7y^2 = 8y^3$ at (-6,2)	10. If $x = y^2 - \cos x$ find $\frac{d^2 y}{dx^2}$ at $\left(\frac{h}{6}, \frac{1}{2}\right)$.
$\sum_{x=1}^{n} (4y \cdot \frac{dy}{dx}) = \sum_{x=1}^{n} \frac{dy}{dx}$	$I = 2\gamma \frac{d\gamma}{dx} + Sinx$
2(-4) → 14(2) # = 24(2)。 #	1-sinx = 2y dy
	$\frac{1-\sin x}{2x} = \frac{dx}{dx} \implies \frac{1-\sin(x)}{2(x)} = \frac{1-\frac{1}{2}}{1} = \frac{1}{2}$
$-\frac{1}{3}$ $-\frac{1}{3}$	
$\frac{dx}{dx} = \frac{dx}{dx}$	$\frac{d^{1}Y}{dt} = \frac{(o-\cos x)^{2}Y - (1-\sin x) \cdot 2\frac{dY}{dx}}{dt}$
$y - 2 = \frac{-12}{12} (x + 14)$	$\frac{dx^{2}}{(2\gamma)^{2}} \qquad $
	$\frac{d^{1}}{dx^{2}} \left(\underbrace{\mathcal{F}_{0}, \frac{1}{2}}_{\left(\mathcal{F}_{0}, \frac{1}{2}\right)}^{2} = \frac{-\cos\left(\frac{\pi}{2}\right) \cdot \Im\left(\frac{1}{2}\right) - \left(1 - \sin\frac{\pi}{2}\right) \cdot \Im\left(\frac{\pi}{2}\right)}{\left[\Im\left(\frac{1}{2}\right)\right]^{2}}$
	$= -\frac{\sqrt{3}}{3} \cdot 1 - (1 - \frac{1}{2})$
	²
	= -53 - 2
	$\frac{d^2Y}{dx^2} = -\frac{\sqrt{3}-1}{2}$
	··· ((5, 2)

Name:

Period:

Unit 4 REVIEW – Contextual Application of Differentiation

Reviews do NOT cover all material from the lessons but should remind you of key points. To be prepared, you should review all packets from Unit 4.

(A) A is always increasing. (B) A is always decreasing. (C) A is increasing only when l > w.

(D) A is increasing only when l < w.

(E) A remains constant.

dA = -2w + l' 2 = 2(l-w) R

The following problems are calculator active.

6. Brust is riding his bicycle north away from an intersection at a rate of 15 miles per hour. Sully is driving his car towards the intersection from the west at a rate of 30 miles per hour. If Brust is 0.4 miles from the intersection, and Sully is 1 mile from the intersection, at what rate is the distance between the two of them increasing or decreasing?

Brust Y x Sul	$\frac{dy}{dt} = 15 \text{ mi/hr}$ $\frac{dx}{dt} = -30 \text{ mi/hr}$ $\chi^{2} + \gamma^{2} = r^{2}$ $\frac{dy}{dt} = 2r \cdot \frac{dr}{dt}$	$\begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} $
7. The side of $cubsurface area S, w$	$\Im_{x} \cdot (-30) + \Im_{x} (rs) = \Im_{x} \frac{dr}{dt}$ $= 30x + rs_{x} = r \cdot \frac{dr}{dt}$	The designer is decreasing by $\frac{24}{5100}$ with r of 0.2 centimeters per second. In terms of the plume of the cube, in cubic centimeters per second?
$ \begin{array}{c} \frac{dx}{dx} = 0, \\ \frac{dx}{dx} = 0, \\ \frac{dx}{dx} = 0, \\ \end{array} $ (A) 0.15	$a \operatorname{cm} (\operatorname{bec} F' \cap D) \xrightarrow{\mathcal{O}}_{\mathcal{O}} f = (B) 0.25$	
(D) 0.04 <i>S</i>	(E) 0.008 <i>S</i>	= 5.(0.1)

8. The function $f(x) = (1 - \sin x)^2$ is concave up at $x = \frac{\pi}{6}$?

a. What is the estimate for f(0.5) using the local linear approximation for f at $x = \frac{\pi}{6}$?

$$\frac{P \circ T}{F(\Xi) = \frac{1}{4}} = \frac{S \circ T}{F'(\Xi) = \frac{1}{3}} = \frac{1}{3} \left(x - \frac{\pi}{2}\right)$$

$$y = -\frac{1}{3} \left(x - \frac{\pi}{2}\right) + \frac{1}{4}$$

$$f(o, 5) = -\frac{1}{3} \left(o, 5 - \frac{\pi}{2}\right) + \frac{1}{4}$$

b. Is it an underestimate or overestimate? Explain.

Date:

End of Unit 5 CA – Analytical Applications of Differentiation

1. Calculator active problem. The first derivative of the function f is given by

$$f'(x) = -2 + x + 3e^{-\cos(4x)}$$

How many points of inflection does the graph of f have on the interval $0 < x < \pi$?

- 2. Calculator active problem. The rate of money in a particular mutual fund is represented by $m(t) = \sin\left(\frac{e}{3}\right)^t$ thousand dollars per year where t is measured in years. Is the amount of money from this mutual fund increasing or decreasing at time t = 4 years? Justify your answer.
- 3. A particle is traveling along the y-axis and its position from the origin can be modeled by $y(t) = 6t - 2t^3 + 10$

where y is meters and t is minutes.

a. On the interval $0 \le t \le 2$, when is the particle farthest above the origin.

b. On the interval $0 \le t \le 2$, what is the particle's maximum speed?

4. A rectangle is formed with the base on the x-axis and the top corners on the function $y = 36 - x^2$. What length and width should the rectangle have so that its area is a maximum?

5. The graph shows the derivative of f, f'. Identify the intervals when f is increasing and decreasing. Include a justification statement.

```
Increasing:
```

Decreasing:

6. For the table below, selected values of x and f(x) are given. Assume that f'(x) and f''(x) do not change signs.

x	f(x)
0	-10
1	-8
2	-5
3	-1

- a. Is f(x) increasing or decreasing?
- b. Is f(x) concave up or concave down?
- 7. Given the function $g(x) = -x^4 + 2x^2 1$, find the interval(s) when g is concave up and decreasing at the same time.

- 8. The Mean Value Theorem can be applied to which of the following function on the closed interval [0, 5]?
 - (A) $f(x) = \frac{x-3}{x+3}$
 - (B) $f(x) = (x-1)^{\frac{2}{3}}$
 - (C) $f(x) = \frac{x+3}{x-3}$
 - (D) f(x) = |x 4|

9. To the right is the graph of h'(x). Identify all extrema of h(x). No justification necessary on this problem.

10. The derivative of g is given by $g'(x) = (5 - x)x^{-3}$ for x > 0. Find all relative extrema and justify your conclusions.

11. Consider the function f defined by $f(x) = e^x \sin x$ with domain $[0, 2\pi]$. Find the absolute maximum and minimum values of f(x).

12. Using the figure below, complete the chart by indicating whether each value is positive (+), negative (-), or zero (0) at the indicated points. For these problems, if the point appears to be a max or min, assume it is. If it appears to be a point of inflection, assume it is.

13. The graph of f is shown below. Which of the following could be the graph of the derivative of f?

