\qquad
Unit 4.5.2 Spheres Solving Related Rates Problems
Spheres - Balloons Galore

1. A spherical balloon is inflated with helium at the rate of $100 \pi \mathrm{ft}^{3} / \mathrm{min}$. (Volume of a sphere is $v=\frac{4}{3} \pi r^{3}$, where r is the radius. Surface area of a sphere is $A=4 \pi r^{2}$, where r is the radius.)
a. How fast is the balloon's radius increasing when the radius is 5 feet?

$$
\frac{d V}{d t}=100 \pi \mathrm{ft} / \mathrm{min}
$$

$$
\begin{aligned}
V & =\frac{4}{3} \pi r^{3} \\
\frac{d}{d t} V & =\frac{d}{d t}\left(\frac{4}{3} \pi r^{3}\right) \\
\frac{d V}{d t} & =4 \pi r^{2} \cdot \frac{d r}{d t} \\
C O O \pi & =4 \pi r^{2} \cdot \frac{d r}{d t}
\end{aligned}
$$

$$
\begin{aligned}
& 100 \pi=4 \pi(5)^{2} \frac{d r}{d t} \\
& 100 \pi=4 \pi(25) \frac{d r}{d t} \\
& \frac{100 \pi}{100 \pi}=\frac{d r}{d t} \\
& \frac{d r}{d t}=1 f+/ \mathrm{min}
\end{aligned}
$$

b. How fast is the surface area increasing when the radius is 5 feet?

$$
\frac{d v}{d t}=100 \pi f+3 / \mathrm{min}
$$

$$
\begin{aligned}
A & =4 \pi r^{2} \\
\frac{d}{d t} A & =\frac{d}{d t}\left(4 \pi r^{2}\right) \\
\frac{d A}{d t} & =8 \pi r \cdot \frac{d r}{d t}
\end{aligned}
$$

FIND $\left.\frac{d A}{d t}\right|_{r=5}$
$\frac{d A}{d t}=8 \pi(5)(1)$
$r=5$

$$
\frac{d A}{d t}=40 r \mathrm{ft}^{2} / \mathrm{mm}
$$

$$
\begin{aligned}
& \frac{d V}{d t}=100 \pi \mathrm{ft} / \mathrm{min} \\
& \left.\frac{d r}{d t}\right|_{r=5}=1 \mathrm{f} / \mathrm{min}
\end{aligned}
$$

\qquad
Spheres
2. The radius of a sphere is increasing at a rate of 2 inches per minute. Find the rate of change of the surface area of the sphere when the radius is 6 inches. (Volume of a sphere is $v=\frac{4}{3} \pi r^{3}$, where r is the radius. Surface area of a sphere is $A=$ $4 \pi r^{2}$, where r is the radius.)

$$
\begin{aligned}
A & =4 \pi r^{2} \\
\frac{d}{t} A & =\frac{d}{d t} 4 \pi^{2} \\
\frac{d t}{d t} & =8 \pi \cdot \frac{d r}{d t} \\
\frac{d A}{d t} & =8 \pi r \cdot \theta
\end{aligned}
$$

$$
\begin{aligned}
& \frac{d A}{d t}=8 \pi(6)(2) \\
& \frac{d A}{d t}=96 \pi \mathrm{in}^{2} / \mathrm{mm}
\end{aligned}
$$

\qquad
Unit 4.5.2 CUBES Solving Related Rates Problems
Cubes - Volume
3. If the volume of a cube is increasing at a rate of $24 \mathrm{in}^{3} / \mathrm{min}$ and the surface area is increasing at $12 \mathrm{in}^{2} / \mathrm{min}$, what is the length of each edge of the cube?

$$
\begin{aligned}
& \frac{\mathcal{E} Q}{\qquad V=x^{3}} \\
& \frac{d}{d t v}=\frac{d}{d t} x^{3} \\
& \frac{d v}{d t}=3 x^{2} \cdot \frac{d x}{d t} \\
& \hline 24=3 x^{2} \frac{d x}{d t} \\
& \frac{\partial y}{3 x^{2}}=\frac{d x}{d t} \\
&
\end{aligned}
$$

The length of an edge of the cube is 8 inches
\qquad
Unit 4.5.2 CONES Solving Related Rates Problems
Cones - Water into a tank
4. A conical tank with the vertex down is 10 feet across the top and 12 feet deep. If water is flowing into the tank at a rate of 10 cubic feet per minute, find the rate of change of the depth of the water when the water is 8 feet deep. (Volume of a cone is $v=\frac{1}{3} \pi r^{2} h$, where r is the radius.)

$$
\frac{d v}{d t}=10 \mathrm{ft}^{3} / \mathrm{min}
$$

$$
\begin{aligned}
& \frac{r}{n}=\frac{5}{12} \\
& r=\frac{5}{12} h
\end{aligned}
$$

$$
\begin{aligned}
V & =\frac{1}{3} \pi\left(\frac{25}{144} h^{2}\right) h \\
V & =\frac{25 \pi}{3 \cdot 144} h^{3} \\
\frac{d}{d t} V & =\frac{d}{d t}\left(\frac{25 \pi}{3 \cdot 144} h^{3}\right) \\
\frac{d V}{d t} & =3 \cdot \frac{25 \pi}{3 \cdot 144} h^{2} \cdot \frac{d h}{d t} \\
1 O & =\frac{25 \pi}{144} h^{2} \cdot \frac{d h}{d t}
\end{aligned}
$$

$$
\begin{aligned}
& 10=\frac{25 \pi}{144}(8)^{2} \cdot \frac{d h}{d t} \\
& 12 \cdot \frac{18}{10 \cdot 9} \\
& \frac{14 \cdot 19}{25 \cdot \pi \cdot \frac{8 \cdot 8}{1}+1_{2}}=\frac{d h}{d t} \\
& \frac{d h}{d t}=\frac{9}{10 \pi} f t / \mathrm{min}
\end{aligned}
$$

\qquad
Unit 4.5.2 CONES Solving Related Rates Problems
Cones - Water out of a tank
5. Water is flowing at a rate of 50 cubic meters per minute from a concrete conical reservoir. The radius of the reservoir is 45 m and the height is 6 m . (Volume of a cone is $v=\frac{1}{3} \pi r^{2} h$, where r is the radius.)
a. How fast is the water level falling when the water is 5 meters deep?

$$
\downarrow \sqrt{4}
$$

$$
\frac{d V}{d t}=-50 \mathrm{~m}^{3} / \mathrm{min}
$$

$$
\frac{r}{n}=\frac{45}{6}
$$

$$
r=\frac{15}{2} h
$$

$$
\begin{aligned}
& V=\frac{1}{3} \pi r^{2} h \\
& V=\frac{1}{3} \pi\left(\frac{15}{2} h\right)^{2} h \\
& V=\frac{1}{3} \pi \cdot \frac{5}{1} \cdot 15 \\
& 4 h^{2} \cdot h \\
& V=\frac{5.15}{4} \pi h^{3} \\
& \frac{d}{d t} V=\frac{d}{d t}\left(\frac{5.15}{4} \pi h^{3}\right) \\
& \frac{d V}{d t}=\frac{3.5 \cdot 15}{4} \pi h^{2} \cdot \frac{d h}{d t} \\
& \frac{d V}{d t}=\frac{225}{4} \pi h^{2} \cdot \frac{d h}{d t} \\
&-50=\frac{225}{4} \pi h^{2} \cdot \frac{d h}{d t}
\end{aligned}
$$

FIND $\left.\frac{d h}{d t}\right|_{n=5}$

$$
-50=\frac{225}{4} \pi(5)^{2} \frac{d h}{d t}
$$

$$
\binom{\text { Divide by }}{\frac{275}{4} \pi(25)}(
$$

Either $\left\{\begin{array}{l}\frac{d h}{d t}=\frac{-50}{\frac{225}{4} \pi(25)} \\ \frac{d h}{d t}=\frac{-8}{225 \pi} \text { meter } / \mathrm{min}\end{array}\right.$
b. How fast is the radius of the water's surface changing when the water is 5 meters deep?

Need volume in terms of $r \ldots$

$$
\begin{aligned}
& \frac{r}{h}=\frac{45}{6} \\
& r=\frac{15}{2} h \\
& h=\frac{2}{15} 6
\end{aligned}
$$

$$
\begin{aligned}
V & =\frac{1}{3} \pi r^{2} \\
\frac{d}{d t}(V & =\frac{1}{3} \pi r^{2} \cdot \frac{2}{15} r \\
\frac{d r}{d t} & \left.=\frac{1}{15} \pi \frac{2}{15} \pi r^{3}\right) \\
-50 & =\frac{2}{15} \pi r^{2} \frac{d r}{d t}
\end{aligned}
$$

\qquad

when $h=5, r=\frac{75}{2}$ $\frac{2}{15} r=5$

$$
r=\frac{75}{2}
$$

$$
\begin{gathered}
-50=\frac{2 \pi}{15}\left(\frac{75}{2}\right)^{2} \cdot \frac{d \sigma}{d t} \\
-50=\frac{2 \pi}{15} \cdot \frac{75 \cdot 75}{2 \cdot 2} \cdot \frac{d \sigma}{d t} \\
\frac{-50 \cdot 15 \cdot 2 \frac{1}{2} \cdot 2}{2 \pi \cdot 75 \cdot 755}=\frac{d r}{d t} \\
\frac{d r}{d t}=\frac{-4}{15 \pi} \mathrm{~meters} / \mathrm{min}
\end{gathered}
$$

