Unit 5.1 Using the Mean Value Theorem

1.

The function g shown in the figure above is continuous on the closed interval $[0, x_6]$ and differentiable on the open interval $(0, x_6)$, where x_1, x_2, x_3, x_4, x_5 , and x_6 are points on the x-axis. Based on the graph, what are all values of x that satisfy the conclusion of the Mean Value Theorem applied to g on the closed interval $[0, x_6]$?

- (A) x₃ only, because this is the value where g(x) equals the average rate of change of g on [0, x₆].
- (B) x₂ and x₄ only, because these are the values where g'(x) = 0 on [0, x₆].
- x_1 and x_5 only, because these are the values where the instantaneous rate of change of g at those values is equal to the average rate of change of g on $[0, x_6]$.

 x_1 , x_3 , and x_5 only, because these are the values where either the instantaneous rate of change of g at the value is equal to the average rate of change of g on $[0, x_6]$ or the value of g(x) is equal to the average rate of change of g on $[0, x_6]$.

AP Calculus Page **1** of **71**

2.

The function f shown in the figure above is continuous on the closed interval [0, 12] and differentiable on the open interval (0, 12). Based on the graph, what are all values of x that satisfy the conclusion of the Mean Value Theorem applied to f on the closed interval [0, 12]?

- (A) 4.5 only because this is the value where f(x) equals the average rate of change of f on [0, 12].
- (B) 3 and 8 because these are the values where f'(x) = 0 on [0, 12].
- 2 and 9 only because these are the values where the instantaneous rate of change of fat those values is equal to the average rate of change of f on [0, 12].
- 2, 4.5, and 9 because these are the values where either the instantaneous rate of change of fat the value is equal to the average rate of change of f on [0, 12] or the value of f(x) is equal to the average rate of change of f on [0, 12].
- The Mean Value Theorem can be applied to which of the following functions on the closed interval [-5, 5]? 3.

 - (A) $f(x) = \frac{1}{\sin x}$ $\chi \neq -2\pi$, 0, 2π (B) $f(x) = \frac{x-1}{|x-1|}$ $\chi \neq -2\pi$, $\chi \neq -2\pi$, $\chi \neq -2\pi$
 - (D) $f(x) = \frac{x^2}{x^2 4}$ $\chi \neq -2$, $\chi \neq 2$

- The Mean Value Theorem can be applied to which of the following functions on the closed interval [-3,3]?

 (A) $f(x) = x^{\frac{2}{3}}$ X Not diff at X=0

 (B) f(x) = |x-1| X Not diff at X=1

 (C) $f(x) = \frac{x-2}{x-5}$ X \neq S
- (D) $f(x) = \frac{x-5}{x-2}$ $\chi \neq Z$

5.

	W=	4 m=	4 m=	The Man	- 174	_
x	0	2	5	7	11	
f(x)	13	5	17	2/28	41	30
				1		-

(2,5) to (5,17)

Selected values of a differentiable function f are given in the table above. What is the fewest possible number of values of c in the interval [0, 11] for which the Mean Value Theorem guarantees that f'(c) = 4?

- (D) Three

6.

	w=	Siz Ma	2/2 m	1/2 m	13/2
x	1	3	5	73/	9
f(x)	0	6	18	29	42
				1	

Selected values of a differentiable function f are given in the table above. What is the fewest possible number of values of c in the interval [1,9] for which the Mean Value Theorem guarantees that f'(c)=6?

29/ 42/8

- (A) Zero
- (B) One
- Two
- (D) Three

- (A) For -2 < k < 2, f(k) > 0
- (B) For -2 < k < 2, f(k) < 0
- (C) For -2 < k < 2, f(k) exists.
- (D) For $-2 \le k \le 2$, f(k) exists, but f is not continuous.
- For some k, where -2 < k < 2, f(k) does not exist.

8.

х	f(x)				
1	2.4	m= 0.6	we need	0.64 (3) 40.9	b/c. f">0
3	3.6	$\int_{\infty} = \infty$ 9	00 0 1 1 0		
5	5.4	\(\sqrt{m = 0.9} \)			

The table above gives selected values of a function f. The function is twice differentiable with f''(x) > 0. Which of the following could be the value of f'(3)?

- (A) 0.6
- (B) 0.7
- (C) 0.9
- (D) 1.2
- (E) 1.5

A differentiable function f has the property that $f'(x) \leq 3$ for $1 \leq x \leq 8$ and f(5) = 6. Which of the following could be true?

(2,0), (S,6) => m = Z

 $(5.4), (6.-2) \Rightarrow m = \frac{8}{-1} = -8$

(5,6), (7,13) => m= = = > 3

I.
$$f(2)=0$$

II.
$$f(6) = -2$$

III.
$$f(7)=13$$

- (A) I only
- (B) II only
- (C) I and II only
- (D) I and III only
- (E) II and III only

- 10. Let f be the function given by $f(x) = x^3 2x^2 + 5x 16$ For what value of x in the closed interval [0,5] does the instantaneous rate of change of f equal the average rate of change of f over that interval?
 - (A) 0
 - (B) 5/3
- (C) 5/2
- (D) 3
- (E) 5

$$f(0) = -16$$

$$f(5) = 125 - 50 + 25 - 16$$

$$f(5) = 84$$

$$f(5) = 84$$

$$O = 3x^{2} - 4x - 15$$

$$O = 3x^{2} - 9x + 5x - 15$$

$$O = 3x(x - 3) + 5(x - 3)$$

$$O = (x - 3)(3x + 5)$$

11. Let f be a polynomial function with degree greater than 2. If $a \neq b$ and f(a) = f(b) = 1, which of the following must be true for at least one value of x between a and b?

I.
$$f(x) = 0$$

$$II. f(x) = 0$$

$$III. f''(x) = 0$$

- (A) None
- (B) I only
- (C) II only
- (D) I and II only
- (E) I, II, and III

- Let f be the function defined by $f(x) = x + \ln x$. What is the value of c for which the instantaneous rate of change of f at x = c is the same as the average rate of change of f over [1,4]?
 - (A) 0.456
 - (B) 1.244
 - (C) 2.164
 - (D) 2.342
 - (E) 2.452

FRQ₁

1.5	-1.0	-0.5	0	0.5	1.0	1.5
-1	-4	-6	-7	~6	-4	-1
-7	-5	-3	0	3)	5	7
	-1 -7	-1 -4 -7 -5	-1 -4 -6 -7 -5 -3	-1 -4 -6 -7 -7 -5 -3 0	-1 -4 -6 -7 ~6 -7 -5 -3 0 3	-1 -4 -6 -7 ~6 -4 -7 -5 -3 0 3 5

Let f be a function that is differentiable for all real numbers. The table above gives the values of f and its derivative f' for selected points x in the closed interval $-1.5 \le x \le 1.5$. The second derivative of f has the property that f''(x) > 0 for $-1.5 \le x \le 1.5$.

13. Find a positive real number r having the property that there must exist a value c with 0 < c < 0.5 and f''(c) = r. Give a reason for your answer.

FRQ 2

Distance x (cm)	0	1	5	6	8
Temperature $T(x)$ (°C)	100	93	70	62	55

A metal wire of length 8 centimeters (cm) is heaten at one end. The table above gives selected values of the temperature T(x), in degrees Celsius (° C), of the wire x cm from the heated end. The function T is decreasing and twice differentiable.

14. Are the data in the table consistent with the assertion that $T^{4}(x) > 0$ for every x in the interval 0 < x < 8? Explain

FRQ3

A continuous function f is defined on the closed interval $-4 \le x \le 6$. The graph of f consists of a line segment and a curve that is tangent to the x-axis at x = 3, as shown in the figure above. On the interval $0 \le x \le 6$, the function f is twice differentiable, with $f''(x) \ge 0$.

- 15. Is there a value of $a,-4 \le a < 6$, for which the Mean Value Theorem, applied to the interval [a, 6], guarantees a value c, a < c < 6, at which $f'(c) = \frac{1}{3}$? Justify your answer.
- F(x) is continuous on [30] and differentiable on (30) $ARC = \frac{f(3) f(6)}{3 6} = \frac{O 1}{3 6} = \frac{1}{3} = \frac{1}{3}$
- By MUT there exists a c on (3,4) such that f'(c) = 1/3