Unit 5.2 Extreme Value Theorem

APClassroom Hw 5.2 MC

which is continuous on [0,217]

- Which of the following functions of x is guaranteed by the Extreme Value Theorem to have an absolute maximum Sinx $\neq -1$ \implies $\chi \neq \frac{3\pi}{2}$ Not Continuous $\chi^2 + \pi + 0 \implies \chi^2 \neq -\pi$ No real Solution: Continuous $\chi^2 + \pi + 0 \implies \chi \neq \pi$ Not Continuous $\chi - \pi + 0 \implies \chi \neq \pi$ Not Continuous on the interval $[0, 2\pi]$?
 - (A) $y = \frac{1}{1+\sin x}$

$$(B) \quad y = \frac{1}{x^2 + \pi}$$

(C)
$$y = \frac{x^2 - 2\pi x + \pi^2}{x - \pi}$$

(D)
$$y = \frac{|x-\pi|}{x-\pi}$$

- Which of the following functions of x is guaranteed by the Extreme Value Theorem to have an absolute maximum 2. on the interval [0,4]?

 Which () (onthuous on [0,4]?

 Which () (onthuous on [0,4]?

 (B) $y = \tan x$ Continuous

 (C) $y = \frac{x^2 - 16}{x^2 + x - 20}$ (x+5)(x-4) $\neq 0$: x $\neq 4$, x $\neq 5$ on the interval [0, 4]?

- $e^{x}-1 \neq 0 \implies e^{x} \neq 1 \implies x \neq 0$

- Let g be the function given by $g(x) = \sqrt{1-\sin^2 x}$. Which of the following statements could be false on the interval $0 \le x \le \pi$?

 Cond. (A) By the Extreme Value Theorem, there is a value c such that $g(c) \le g(x)$ for $0 \le x \le \pi$.

 (B) By the Extreme Value Theorem, there is a value c such that $g(c) \ge g(x)$ for $0 \le x \le \pi$.

 Cond. (C) By the Intermediate Value Theorem, there is a value c such that $g(c) = \frac{g(0) + g(\pi)}{2}$.

 (D) By the Mean Value Theorem, there is a value c such that $g'(c) = \frac{g(\pi) g(0)}{\pi 0}$.

$$g'(x) = \frac{-S_{1} \times cosx}{\sqrt{1-s_{1}n^{2}x}}$$

$$1 \neq s_{1}n^{2}x$$

$$1 \neq s_{1}n^{2}x$$

$$x \neq \pi c$$

$$g'(x) \text{ is not}$$

$$diff \text{ of } x = \pi c$$

Let g be the function given by $g(x) = \sqrt{1 + \cos x}$. Which of the following statements could be false on the interval $\frac{\pi}{2} \le x \le \frac{7\pi}{4}$?

(A) By the Extreme Value Theorem, there is a value c such that $g(c) \leq g(x)$ for $\frac{\pi}{2} \leq x \leq \frac{7\pi}{4}$.

(B) By the Extreme Value Theorem, there is a value c such that $g(c) \geq g(x)$ for $\frac{\pi}{2} \leq x \leq \frac{7\pi}{4}$.

Cont. (C) By the Intermediate Value Theorem, there is a value c such that $g(c) = \frac{g(\frac{\pi}{2}) + g(\frac{7\pi}{4})}{2}$.

(D) By the Mean Value Theorem, there is a value c such that $g'(c) = \frac{g(\frac{7\pi}{4}) - g(\frac{\pi}{2})}{\frac{7\pi}{4} - \frac{\pi}{2}}$.

$$g' = \frac{-\sin x}{2 \int 1 + \cos x}$$

$$g' \in S \text{ undefined when } 2 \int 1 + \cos x = 0$$

$$1 + \cos x = 0$$

$$\cos x = -1$$

$$x = \pi \quad \text{if } g' \in S \text{ undefined with}$$

5. 0 1 2 3 0 4 7 6 f(x)

Let f be a function with selected values given in the table above. Which of the following statements must be true?

Continues X. I. By the Intermediate Value Theorem, there is a value c in the interval (0,3) such that f(c)=2.

Continues X. II. By the Mean Value Theorem, there is a value c in the interval (0,3) such that f'(c)=2.

Continues X. III. By the Extreme Value Theorem, there is a value c in the interval [0,3] such that $f(c) \leq f(x)$ for all x in the interval [0,3]the interval [0,3].

- (A) None
- (B) I only
- (C) II only
- (D) I, II, and III

6.	\boldsymbol{x}	0	1	2	3
	f(x)	15	14	12	9

Let f be a function with selected values given in the table above. Which of the following statements must be true?

Continues $^{\times}$ I. By the Intermediate Value Theorem, there is a value c in the interval (0,3) such that f(c)=10. So the interval (0,3) such that f'(c)=-2. By the Extreme Value Theorem, there is a value c in the interval (0,3) such that f'(c)=-2. By the Extreme Value Theorem, there is a value c in the interval (0,3) such that $f(c) \leq f(x)$ for all x in the interval (0,3) such that (0,3) such tha the interval [0, 3].

- (A) None
- I only
- (C) II only
- (D) I, II, and III

7.

х	10	11	12	13	14
f(x)	5	2	3	6	5
Dec "			1 / C		Dec

The table above gives values of the continuous function f at selected values of x. If f has exactly two critical points on the open interval (10, 14), which of the following must be true?

- (A) f(x) > 0 for all x in the open interval (10, 14). Some (-v) could be neg
- (B) f(x) exists for all x in the open interval (10, 14). Diff (5 not guaranteed.
- (C) f(x) < 0 for all x in the open interval (10, 11). f(x) = 0 (1) Concreasing Sometime between 11 4 x 4 13
 - (D) f(12) ≠ 0 This would require more CV

Let f be the function defined by $f(x) = \frac{\ln x}{x}$. What is the absolute maximum value of f?

- (C) 0
- (D) -e
- $f' = \frac{1}{x} \cdot x \ln x \cdot 1 = \frac{1 \ln x}{x}$ $f' = \frac{1}{x^2} \cdot x \ln x \cdot 1 = \frac{1 \ln x}{x^2}$ $e = \frac{\ln x}{e} = \frac{1}{e}$ $x = \frac{1 \ln x}{x^2 = 0}$ $x = \frac{1 \ln x}{x^2 = 0}$

(E) f does not have an absolute maximum value.

9. If f is continuous for $a \le x \le b$ and differentiable for a < x < b, which of the following could be false?

- (A) $f'(c) = \frac{f(b) f(a)}{b a}$ for some c such that a < c < b. MVT
- f(c)=0 for some c such that a < c < b.

10. Let g be the function given by $g(x) = x^2 e^{kx}$, where k is a constant. For what value of k does g have a critical point 9'= 2x-ekx + x2.ekx.K

(A) -3

- (D) 0
- (E) There is no such k.

ot
$$\chi = \chi_3$$
 $0 = \frac{2}{3}e^{\chi_3 K}$ $0 = 2 + \frac{2}{3}K$

No Solution $0 = 2 + \frac{2}{3}K$
 $-2 = \frac{2}{3}K$

- How many critical points does the function $f(x)=(x+2)^5(x-3)^4$ have?
 - (A) One
 - (B) Two
 - (C) Three
 - (D) Five
 - (E) Nine

- f = 5(x+2) 1 (x-3) 4 + (x+2) 5.4(x-3).1
- $f' = (x+2)^{4}(x-3)^{3} \left[5(x-3) + (x+3) \cdot 4 \right]$ $f' = (x+3)^{4}(x-3)^{3} \left[ax 7 \right]$ Three Cu from 1st Derivative (more from 2nd)

- The first derivative of the function f is given by $f'(x) = \frac{\cos^2 x}{x} \frac{1}{5}$. How many critical values does f have on the open interval (0,10)?
 - (A) One
 - (B) Three
 - (C) Four
 - (D) Five
 - (E) Seven

- 13. If f is a continuous function on the closed interval [a, b], which of the following must be true?
 - There is a number c in the open interval (a, b) such that f(c) = 0.
 - There is a number c in the open interval (a, b) such that f(a) < f(c) < f(b).
 - There is a number c in the closed interval [a, b] such that $f(c) \ge f(x)$ for all x in [a, b].

 - There is a number c in the open interval (a, b) such that f'(c) = 0 Polle's Theorem (Haven't learned)

 There is a number c in the open interval $(a \ b)$ such that $f'(c) = \frac{f(b) f(a)}{b a}$.

- The function f is defined for all x in the closed interval [a, b] If f does not attain a maximum value on [a, b], If fdoes not attain a maximum value on which of the following must be true? YEUT does NOT apply
 - (A) f is not continuous on [a, b].
 - (B) f is not bounded on [a, b].
 - (C) f does not attain a minimum value on [a, b].
 - (D) The graph of f has a vertical asymptote in the interval [a, b].
 - The equation f'(x) = 0 does not have a solution in the interval [a, b].