Directions: In the box below are the numbers 0-9. Complete the following problems and cross off the number for each answer. If you complete all problems correctly, you will cross off each number exactly once!

0
1
2
a) A particle moves along the x axis for $t \geq 0$. The position of the particle is given by $x(t)=t^{3}-9 t^{2}-21 t+6$. At what time t does the particle change directions?
(2)

$$
\begin{gathered}
v(t)=3 t^{2}-18 t-21 \\
0=3\left(t^{2}-6 t-7\right) \\
0=3(t+1)(t-7) \\
t \neq-1 ; t=7
\end{gathered}
$$

 dec to ne
b) A bug is moving back and forth on a straight path. The velocity of the bug is given by $v(t)=t^{2}-3 t$. Find the average acceleration of the bug over the interval [1,4].

$$
2
$$

$$
\begin{aligned}
v(1) & =1^{2}-3(1) \\
v(1) & =-2 \\
v(4) & =4^{2}-3(4) \\
& =16-12 \\
v(4) & =4
\end{aligned}
$$

$v(t)$ is above x-ares

$$
\therefore v(t)>0
$$

$v(t)$ is on x-aws

$$
\therefore v(t)=0
$$

$v(t)$ is belau x-axis $\therefore v(t)<0$

$$
\begin{aligned}
& v(t) \text { is increasing } \\
& \therefore a(t)>0 \\
& v(t) \text { is decreasing } \\
& \therefore a(t)<0
\end{aligned}
$$

$v(t)$ hes local extrema

$$
\therefore a(t)=0
$$

c) The velocity of a particle for $0 \leq t \leq 9$ is given in the graph above. At which of the following values

Big 10: Motion

$$
\begin{array}{cl}
t=3 & t=4 \\
v(3)>0 & v(4)=0 \\
a(3)<0 & a(3)<0
\end{array}
$$

$$
\begin{aligned}
& t=7 \\
& v(7)<0 \\
& a(7)=0
\end{aligned}
$$

bryanpasswater1@gmail.com

P

d) For $0 \leq t \leq 10$, particles P and Q move along the x axis. The position of particle P can be modeled by $x_{P}(t)$ as shown in the figure above. The position of particle Q is defined by $x_{Q}(t)$. Selected values of $x_{Q}(t), v_{Q}(t)$, and $a_{Q}(t)$ are given in the table above. At what time t are particles P and Q moving towards each other?

$$
t=3
$$

$$
t=a
$$

e) The position of a bug moving along a vertical post is given by the equation $y(t)=\frac{-12}{\pi} \cos \left(\frac{\pi t}{6}\right)+6 t-1$.

$$
\begin{aligned}
& \text { Find } v(3) \\
& Y^{\prime}(t)=\frac{-12}{\pi} \cdot\left(-\sin \left(\frac{\pi}{6} t\right)\right) \cdot \frac{\pi}{6}+6 \\
& \left.V^{\prime}(t)\right)
\end{aligned}
$$

$$
\begin{aligned}
v^{\prime}(3) & =2 \sin \left(\frac{\pi}{6} \cdot 3\right)+6 \\
v^{\prime}(3) & =2 \sin \left(\frac{\pi}{2}\right)+6 \\
& =2 \cdot 1+6 \\
v^{\prime}(3) & =8
\end{aligned}
$$

t	1	2	4	6	8
$x(t)$	3	0	-1	-4	5
$v(t)$	2	1	-3	3	0

f) A particle is moving along the x axis. The position and velocity of the particle is recorded for various times in the table above. At which time t is the particle moving towards the origin?
$A+t=6 . .$.

g) The velocity of a particle is given in the graph above for $0 \leq t \leq 11$. How many times on the interval does the particle change directions? $u(t)=0$
$v(t)$ changes signs $\}$ particle changes directions
$v(t)=0$ and changes signs at $t=6$
\therefore particle changes directions there
The particle changes direction (1)time
h) The position of a bug moving along a straight path is given by $s(t)=t^{2}-2 t+3$. At what time t is the instantaneous velocity equal to the average velocity of the bug on $[0,6]$?
mean value Theorem

$$
v(t)=\text { Averse Velocity }
$$

(legion later)

$$
\begin{aligned}
& v(t)=2 t-2 \\
& A_{1} \text { velocity }=\frac{s(0)-s(6)}{0-6}
\end{aligned}
$$

$$
2 t-2=\frac{s(0)-s(6)}{0-6}
$$

$$
2 t-2=\frac{3-27}{-6}
$$

$$
2 t-2=\frac{-24}{6}
$$

$$
2 t-2=4
$$

$$
2 t=6
$$

$a(t)=0$

i) The velocity of an object is graphed above for $0 \leq t \leq 10$. What is the velocity of the object when the acceleration equals 0 ?

- ACCeleration measures rate of change in velocity
- $\alpha(t)$ is slope of velocity
- $a(t)=0$ when hon zonal tangent
- horizontal tangent at SmOOTH Local Max/mis
$t=3$
j) The position of a bug moving along the x axis is given by $x(t)=a t+b$, where a and b are both nonzero.

Find the acceleration of the bug at any given time t.

