Graphing \& Basic Optimization
 5.1A - Graphing Using Derivatives

Find the interval for which the derivative is positive and the interval for which the derivative is negative.

The first column shows graphs of four functions and the second column shows the graphs of their derivatives. Match each function with its derivative.

Graphing \& Basic Optimization
 5.1A - Graphing Using Derivatives

Find the critical values of each function.
(On day 1, just find CV from $1^{\text {st }}$ derivative. On day 2, find CV from $2^{\text {nd }}$ derivative.)
\#7) $\quad f(x)=x^{3}-48 x$
\#8) $\quad f(x)=x^{3}-6 x^{2}-15 x+30$
\#9) $\quad f(x)=x^{4}+4 x^{3}-8 x^{2}+1$
\#10) $\quad \mathrm{f}(\mathrm{x})=(2 \mathrm{x}-6)^{4}$
\#11) $\mathrm{f}(\mathrm{x})=3 \mathrm{x}+5$
\#12) $\quad f(x)=x^{3}+x^{2}-x+4$

Graphing \& Basic Optimization
 5.1A - Graphing Using Derivatives

Sketch the graph of each function by hand using a sign diagram. (0n day 1, use first derivative sign diagram. On day two, use the second derivative sign diagram.)
\#13) $f(x)=x^{3}-3 x^{2}-9 x+10$

The Calculus
\#14) $f(x)=x^{4}+4 x^{3}-8 x^{2}+64$

The Calculus
\#15) $f(x)=-x^{4}+4 x^{3}-4 x^{2}+1$

The Calculus
Page 5 of 16
\#16) $f(x)=3 x^{4}-8 x^{3}+6 x^{2}$

The Calculus

The Calculus
\#18) $\quad f(x)=\left(x^{2}-4\right)^{2}$

The Calculus

The Calculus

The Calculus Page 10 of 16

Graphing \& Basic Optimization
5.1A - Graphing Using Derivatives
\#21) $\quad f(x)=\sqrt{400-x^{2}}$

The Calculus
Page 11 of $\mathbf{1 6}$
\#22) $\quad f(x)=\frac{1}{x^{2}-2 x-8}$

The Calculus
\#23) $\quad f(x)=\frac{8}{x^{2}+4}$

The Calculus
\#24) $\quad f(x)=\frac{x^{2}}{x^{2}+1}$

The Calculus
\#25) $\quad f(x)=\frac{x^{2}}{x-3}$

The Calculus

Answers
\#1) \quad positive $(-\infty,-2) u(0, \infty)$ negative $(-2,0)$
\#2) \quad positive $(0,4)$, negative $(-\infty, 0) u(4, \infty)$
\#3) c
\#4) a
\#5) d
\#6) b
\#7) $\quad 1^{\text {st }}$ derivative $\mathrm{cv}:-4,4 \quad 2^{\text {nd }}$ derivative cv :
\#8) $\quad 1^{\text {st }}$ derivative cv: $-1,5 \quad 2^{\text {nd }}$ derivative cv:
\#9) $\quad 1^{\text {st }}$ derivative cv: $-4,0,1 \quad 2^{\text {nd }}$ derivative cv:
\#10) $\quad 1^{\text {st }}$ derivative $\mathrm{cv}: 3$
\#11) $\quad 1^{\text {st }}$ derivative cv : none $2^{\text {nd }}$ derivative cv:
\#12) $1^{\text {st }}$ derivative $\mathrm{cv}:-1, \frac{1}{3} \quad 2^{\text {nd }}$ derivative cv :
\#13) - \#25) Use calculator to check your graphs.

