APC - Advanced Techniques
 6.2 - Related Rates

Sometimes both variables in an equation will be functions of a third variable, usually t for time. For example, for a seasonal product such as fur coats, the price p and weekly sales x will be related by a demand equation, and both price p and quantity x will depend on the time of year.

Differentiating both sides of the demand equation with respect to time t will give an equation relating the derivatives $\frac{d p}{d t}$ and $\frac{d x}{d t}$

Such "related rates" equations show how fast one quantity is changing relative to another.

Ex A: Finding Related Rates

$$
\frac{d r}{}=\frac{2 f 0 e^{t}}{1 \sec }
$$

\#1) A pebble thrown into a pond causes circular ripples to radiate outward. If the radius of the outer ripple is growing by 2 feet per second, how fast is the area of the circle growing at the moment when the radius is 10 feet?
A : Area in feet ${ }^{2}$

$$
\text { FIND }\left.\frac{d A}{d t}\right|_{r=10}
$$

$r=$ radius ...feet Since the radius is increasing by 2 feet per second, $\frac{d r}{d t}=\frac{\partial \mathrm{ft}}{1 \mathrm{sec}}$ $t=$ time in serous

$$
\begin{aligned}
f(& =\pi r^{2} \\
\frac{d}{d t}(A) & =\frac{d}{d t}\left(\pi r^{2}\right) \\
\frac{d A}{d t} & =2 r \pi \frac{d r}{d t} \\
\frac{d A}{d t} & =2 r \pi(2) \\
\frac{d A}{d t} & =4 r \pi
\end{aligned}
$$

$$
\begin{aligned}
\left.\frac{d A}{d t}\right|_{r=10} & =4(10) \pi \\
& =40 \pi \mathrm{f}^{2} / \mathrm{sc} \\
\left.\frac{d A}{d t}\right|_{r=10} & \approx 125.6 \mathrm{ft}^{2} / \mathrm{sec}
\end{aligned}
$$

When the radius is 10 ft , the area of the circle is growing by $125.6 \mathrm{fy} / \mathrm{sec}$

\#2) A boat yard's total profit from selling x outboard motors is $P(x)=-x^{2}+$ $1000 x-2000$. If the outboards are selling at the rate of 20 per week, how fast is the profit changing when 400 motors have been sold?

$$
\begin{aligned}
& \text { profit changing when } 400 \text { motors have been sold? } \\
& \text { FIND }\left.^{d P}\right|_{x=400} \quad \begin{array}{l}
x=\text { outboard motors } \\
P=\text { profit }
\end{array}
\end{aligned} \frac{d x}{d t}=\frac{20 \text { outboards }}{1 \text { ween }}
$$

$$
\begin{aligned}
P(x) & =-x^{2}+1000 x-2000 \\
\frac{d}{d t} P(x) & =\frac{d}{d t}\left(-x^{2}\right)+\frac{d}{d t}(1000)-\frac{d}{d t}(2000) \\
\frac{d P}{d t} & =-\partial x \frac{d x}{d t}+1000 \frac{d x}{d t}-0 \\
\frac{d P}{d t} & =-\partial x \frac{d x}{d t}+1000 \frac{d x}{d t} \\
\frac{d P}{d t} & =-2 x(20)+1000(20) \\
\frac{d P}{d t} & =-40 x+20000
\end{aligned}
$$

Pro Tips

Pro Tips

APC - Advanced Techniques
6.2 - Related Rates
\#3) A study of urban pollution predicts that sulfur oxide emissions in a city will be $S(x)=0.1 x^{2}+20 x+2$ tons, where x is the population (in thousands). The population of the city t years from now is expected to be $x=20 \sqrt{t}+800$ thousand people. Find how rapidly sulfur oxide pollution will be increasing 4 years from now.

$$
\begin{aligned}
& S=\text { Sulfur oxide } \\
& x=\text { pop in thousands } \\
& t=\text { years }
\end{aligned}
$$

$$
\text { Find }\left.\frac{d S}{d t}\right|_{t=4}
$$

$$
\begin{aligned}
S(x) & =0 \cdot 1 x^{2}+20 x+2 \\
\frac{d}{d t} S(x) & =\frac{d}{d t}\left(0.1 x^{2}\right)+\frac{d}{d t}(20 x)+\frac{d}{d t}(2) \\
\frac{d S(x)}{d t} & =0.2 x \frac{d x}{d t}+20 \frac{d x}{d t}+0 \\
\frac{d S(x)}{d t} & =0.2 x \frac{d x}{d t}+20 \frac{d x}{d t} \\
\frac{d S(x)}{d t} & =0.2(20 \sqrt{t}+800) \frac{d x}{d t}+20 \frac{d x}{d t} \\
\frac{d S}{d t} & =(4 \sqrt{t}+160) \frac{d x}{d t}+20 \frac{d x}{d t} \\
\frac{d S}{d t} & =(4 \sqrt{t}+160)\left(\frac{10}{\sqrt{t}}\right)+20\left(\frac{10}{\sqrt{t}}\right) \\
& =40+\frac{1600}{\sqrt{t}}+\frac{200}{\sqrt{t}} \\
\left.\frac{d S}{d t} \right\rvert\, & =40+\frac{1600}{\sqrt{4}}+\frac{200}{\sqrt{4}} \\
t & =40+\frac{1600}{2}+\frac{200}{2} \\
& =440+800+100 \\
& =40 n 5 \text { per } 10 \operatorname{ear}
\end{aligned}
$$

In 4 years, the sop. will increase b, 940 tom/week

Pro Tips

