Graphing \& Basic Optimization

5.1A - Graphing Using Derivatives
\#19) $f(x)=0.01 x^{5}-0.05 x$

(3) $\quad f^{\prime}(x)=0.05(x-1)(x+1)\left(x^{2}+1\right)$

(C) y-in ${ }^{+}$
$f(0)=0$

Graphing \& Basic Optimization
5.1A - Graphing Using Derivatives
\#20) $f(x)=x^{3}-2 x^{2}+x+11$

CV
(1)

$$
\begin{aligned}
& f^{\prime}(x)=3 x^{2}-4 x+1 \\
& 0=\left(3 x^{2}-3 x\right)+(x+1) \\
& 0=3 x(x-1)+-1(x-1) \\
& 0=(x-1)(3 x-1) \\
& \text { ZON } \\
& 0=x-1 \quad 3 x-1=0 \\
& 1=x\left\{\begin{array}{r}
3 x-1=0 \\
3 x=1 \\
x=1 / 3
\end{array}\right. \\
& \text { Cv: } x=\frac{1}{3} \text {, } 1
\end{aligned}
$$

(2)

$$
\begin{gathered}
C P \\
f(1 / 3)=11.15 \\
f(1)=11 \\
C P:(1 / 3,11.15),(1,11)
\end{gathered}
$$

(4)

$$
\begin{gathered}
C V \\
f^{\prime \prime}(x)=6 x-4 \\
0=2(3 x-2) \\
\text { zon } \\
0 \neq 2\left\{\begin{array}{l}
3 x-2=0 \\
3 x=2 \\
x=2 / 3
\end{array}\right. \\
\text { Cu:x=2/3}
\end{gathered}
$$

$C P$
(5)

$$
\begin{aligned}
& f(2 / 3)=11.07 \\
& C P:(3 / 3,11.07)
\end{aligned}
$$

(6)

$$
f^{\prime \prime}(x)=2(3 x-2)
$$

$$
(+)(-)=-\quad,(+)(+)=+
$$

$$
\underset{0}{f^{\prime} f^{\prime \prime}<0^{\prime}(1 / 3)=0}
$$

Concare ip concars down $(2 / 3,11.07)$ UP

Domain Restriction!
7 Graphing \& Basic Optimization 5.1A - Graphing Using Derivatives

$$
\begin{aligned}
& {\left[\left(400-x^{2}\right)^{\frac{1}{2}}\right]^{\prime} } \\
= & \frac{1}{3}\left(400-x^{2}\right)^{-\frac{1}{2}}\left(400-x^{2}\right)^{\prime}
\end{aligned}
$$

\#21) $\quad f(x)=\sqrt{400-x^{2}}$

$$
\begin{aligned}
& \sqrt[(11)]{f^{\prime}(x)=\frac{1}{2}\left(400-x^{2}\right)^{\frac{1}{2}}(\cdot 2 x)} \\
& 0=\frac{-x}{\sqrt{400-x^{2}}} \\
& 20 N \\
& 200 \\
& C v: x=0 \quad \begin{array}{l}
0=-x \\
0=x \\
0=\sqrt{400-x^{2}} \\
0=400-x^{2} \\
x^{2}=400 \\
x= \pm 20
\end{array} \\
& \text { Cv:x=-20,20}
\end{aligned}
$$

(2)

$$
\begin{aligned}
& f(-20)=0 \\
& f(0)=20 \\
& f(20)=0 \\
& C P:(-20,0)(0,20)(20,0)
\end{aligned}
$$

(4)
(3) $\quad f^{\prime}(x)=\frac{-x}{\sqrt{400-x^{2}}}$

$$
\begin{aligned}
& \frac{(+)}{\sqrt{-}}=\text { und } \quad 1 \frac{(+)}{\sqrt{t}}=+\quad \frac{(-)}{\sqrt{t}}=-1 \frac{(-)}{\sqrt{-}}=\text { und } \\
& f^{\prime}=\text { und }: f^{\prime}>0: f^{\prime}<0: f^{\prime}=\text { und } \\
& \frac{1}{-30} f^{\prime}(-20)=\text { und } \\
& f^{\prime}(0)=0, f^{\prime}(70)=\text { ind } 30
\end{aligned}
$$

$$
\begin{align*}
& f^{\prime \prime}(x)=\frac{(-x)^{\prime} \cdot \sqrt{400-x^{2}}-(-x)\left(\sqrt{400 \cdot x^{2}}\right)^{\prime}}{\left(\sqrt{400-x^{2}}\right)^{2}} \\
& 0=\frac{-1 \cdot \sqrt{400-x^{2}}+x\left(\frac{1}{2}\right)\left(400-x^{2}\right)^{1 / 2}(-2 x)}{400-x^{2}} \\
& =\frac{\left(400-x^{2}\right)^{2 / 2}\left[-1\left(400-x^{2}\right)-x^{2}\right]}{\left(400-x^{2}\right)^{\prime}} \\
& =\frac{\left(400-x^{2}\right)^{-3 / 2}\left(-400+x^{2}-x^{2}\right)}{} \\
& 0=\frac{-400}{\left(\sqrt{400-x^{2}}\right)^{-3}} \\
& 20 N \\
& \text { 200 Rule } \\
& 0=\left(\sqrt{\left.400-x^{2}\right)^{3}}\right. \\
& 0=400-x^{2} \\
& x^{2}=400 \\
& \text { CV: } x= \pm 20 \tag{5}
\end{align*}
$$

(7) y-int

$$
f(0)=20
$$

Graphing \& Basic Optimization
5.1A - Graphing Using Derivatives
\#22

$$
\begin{aligned}
& f(x)=\frac{1}{x^{2}-2 x-8} \\
& f(x)=\frac{1}{(x-4)(x+2)}
\end{aligned}
$$

RATIONAL!

HOLES - Asymptotes

$$
\left[\begin{array}{l}
(x-4)(x+2)=0 \\
x-4=0 \\
x=4
\end{array}\right\} \begin{aligned}
& x+2=0 \\
& x=-2
\end{aligned} \begin{aligned}
& n A \\
& 0<2, \text { so HA } y=0
\end{aligned}
$$

(3)

$$
f^{\prime}(x)=\frac{-2(x-1)}{[(x-4)(x+2)]^{2}}
$$

(1)
$C V$
$f(x)=\left(x^{2}-2 x-8\right)^{-1}$
$f^{\prime}(x)=-\left(x^{2}-2 x-8\right)^{-2}(2 x-2)$
$0=\frac{-(-x-2)}{\left(x^{2}-2 x-8\right)^{2}}$

$$
0=\frac{-2(x-1)}{[(x-4)(x+2)]^{2}}
$$

(७) $f(-3)=$ und

$$
f(1)=-\frac{1}{9}
$$

$$
f(4)=\text { und }
$$

$$
C P\left(1,-\frac{1}{9}\right)
$$

$$
\begin{aligned}
& \text { ZON } \\
& 0=-2(x-1) \\
& 0 \neq-2\} \begin{array}{l}
0=x-1 \\
1=x
\end{array} \\
& \text { cu: } x=1 \\
& \text { 200 } \\
& 0=[(x-4)(x+2)]^{2} \\
& 0=(x-4)(x+2) \\
& \left.\begin{array}{l}
0=x-4 \\
4=x
\end{array}\right\} \begin{array}{c}
0=x+2 \\
-2=x
\end{array} \\
& \text { cv: } x=-2,4
\end{aligned}
$$

y-int
(7) $f(0)=-\frac{1}{8}$

\#23) $f(x)=\frac{8}{x^{2}+4} \quad$ RATIONAL

$$
f(x)=\frac{8}{x^{2}+4}
$$

Holes \rightarrow Asymptotes
$\frac{v A}{x^{2}+4=0}$

No $V A$
(1)
$x^{2}+4=0$
$x^{2}=-4$
$x= \pm \sqrt{-4}$
$x=$ image

$$
\begin{gathered}
C V \\
f(x)=8\left(x^{2}+4\right)^{-1} \\
f^{\prime}(x)=-8\left(x^{2}+4\right)^{-2}\left(x^{2}+4\right)^{\prime} \\
0=-8\left(x^{2}+4\right)^{-2}(2 x) \\
0=\frac{-16 x}{\left(x^{2}+4\right)^{2}} \\
2 O D \\
\text { LON } \\
\begin{array}{l}
\text { VOL } \\
0=x \\
C v: x=0
\end{array} \quad \begin{array}{l}
\left.0=x^{2}+4\right)^{2} \\
0=x^{2}+4 \\
-4=x^{2} \\
\pm \sqrt{-4}=x \\
\text { imagine } \\
\text { No CV }
\end{array}
\end{gathered}
$$

3

$$
\begin{aligned}
& f^{\prime}=\frac{-16 x}{\left(x^{2}+4\right)^{2}} \\
& \frac{(-)(-)}{+\quad+1}=+\frac{(-)(+)}{+}=- \\
& \stackrel{f^{\prime}>0: \quad f^{\prime}<0}{f^{\prime}(0)=0} \\
& \overrightarrow{M A x})
\end{aligned}
$$

7

$$
\begin{aligned}
& y \text {-int } \\
& f(0)=0
\end{aligned}
$$

(2)

$$
\begin{gathered}
C P \\
f(0)=2 \\
C P:(0,2)
\end{gathered}
$$

\#24) $f(x)=\frac{x^{2}}{x^{2}+1} \quad$ Ratural!
No Holes

$$
\begin{aligned}
& v A \\
& \left.\begin{array}{l}
x^{2}+1=0 \\
x^{2}=-1 \\
x= \pm \sqrt{-1} \\
x=\text { dne. }
\end{array} \quad \begin{array}{l}
n A \\
2=2 \text {, so HA } y=1
\end{array}\right]
\end{aligned}
$$

(1)

$$
f^{\prime}(x)=\frac{\left(x^{2}\right)^{\prime}\left(x^{2}+1\right)-x^{2}\left(x^{2}+1\right)^{\prime}}{\left(x^{2}+1\right)^{2}}
$$

$$
=\frac{2 x\left(x^{2}+1\right)-x^{2}(2 x)}{\left(x^{2}+1\right)^{2}}
$$

$$
=\frac{2 x^{3}+2 x-2 x^{3}}{\left(x^{2}+1\right)^{2}}
$$

$$
0=\frac{2 x}{\left(x^{2}+1\right)^{2}}
$$

ZON

$$
0=2 x
$$

$$
0=x
$$

$$
\begin{gathered}
\text { ZOD } \\
\left(x^{2}+1\right)^{2}=0 \\
x^{2}+1=0 \\
x^{2}=-1 \\
x= \pm \sqrt{-1} \\
x=\text { d.n.e. }
\end{gathered}
$$

(3) $f^{\prime}(x)=\frac{2 x}{\left(x^{2}+1\right)^{2}}$

$$
\begin{aligned}
& \frac{(-)}{(+)}=-\quad \begin{array}{c}
1 \\
\vdots \\
\underset{-1}{ } \quad f^{\prime}(0)=0
\end{array} \\
& f^{\prime}<0! \\
& f^{\prime}>0
\end{aligned}
$$

$$
\xrightarrow[M I M]{(0,0)} \Pi
$$

$$
c v: x=0
$$

(2) $\begin{gathered}C P \\ f(0)=0 \\ C P(0,0)\end{gathered}$

Graphing \& Basic Optimization
5.1A - Graphing Using Derivatives
\#25) $f(x)=\frac{x^{2}}{x-3}$ RATIONAL!
Noltoles vA
HA

$$
x-3=0
$$

$n ? d$
2>1, so no HA
$2=1+1$, so $5 A \quad y=x+3$

$$
x=3
$$

(1)

$$
\begin{aligned}
& f^{\prime}(x)=\frac{\left(x^{2}\right)^{\prime}(x-3)-x^{2}(x-3)^{\prime}}{(x-3)^{2}} \\
&=\frac{2 x(x-3)-x^{2}(1)}{(x-3)^{2}} \\
&=\frac{2 x^{2}-6 x-x^{2}}{(x-3)^{2}} \\
&=\frac{x^{2}-6 x}{(x-3)^{2}} \\
&=\frac{x(x-6)}{(x-3)^{2}} \\
& 20 N \\
& 0=x(x-6) \quad \begin{array}{l}
2=x-3)^{2} \\
0=x-6 \\
0=x \\
3=x \\
\text { Cv: } x=0,6 \\
\text { Cu:x }=3
\end{array}
\end{aligned}
$$

$C P$
(2)

$$
\begin{aligned}
& f(0)=0 \\
& f(3)=\text { und } \\
& f(6)=12 \\
& \operatorname{cp}(0,0),(6,12)
\end{aligned}
$$

(7) $\frac{y-i n t}{f(0)}$

$$
f(0)=0
$$

Answers		
$\# 1)$	positive $(-\infty,-2) u(0, \infty)$ negative $(-2,0)$	
$\# 2)$	positive $(0,4)$,	
$\# 3)$	c	
$\# 4)$	a	
$\# 5)$	d	
$\# 6)$	b	
$\# 7)$	$1^{\text {st }}$ derivative $(-\infty, 0) u(4, \infty)$	
$\# 8)$	$1^{\text {st }}$ derivative cv: $-4,4$	
$\# 9)$	$1^{\text {st }}$ derivative cv: $-4,5$	$2^{\text {nd }}$ derivative cv:
$\# 10)$	$1^{\text {st }}$ derivative cv: 3	$2^{\text {nd }}$ derivative cv:
$\# 11)$	$1^{\text {st }}$ derivative cv: none	$2^{\text {nd }}$ derivative cv:
$\# 12)$	$1^{\text {st }}$ derivative cv: $-1, \frac{1}{3}$	$2^{\text {nd }}$ derivative cv:
		$2^{\text {nd }}$ derivative cv:
	$2^{\text {nd }}$ derivative cv:	

\#13) - \#25) Use calculator to check your graphs.

