Graphing \& Basic Optimization
 5.1A - Graphing Using Derivatives

Find the interval for which the derivative is positive and the interval for which the derivative is negative.
\#1)

\#2)

$$
\begin{aligned}
& f^{\prime}>0 \text { when }(0,4) \\
& f^{\prime}<0 \text { when }(-\infty, 0) u(4, \infty)
\end{aligned}
$$

The first column shows graphs of four functions and the second column shows the graphs of their derivatives. Match each function with its derivative.

Graphing \& Basic Optimization
 5.1A - Graphing Using Derivatives

Find the critical values of each function.
(On day 1, just find CV from $1^{\text {st }}$ derivative. On day 2, find CV from $2^{\text {nd }}$ derivative.)
\#7) $\quad f(x)=x^{3}-48 x$

\#8)
$f(x)=x^{3}-6 x^{2}-15 x+30$

\#9) $\mathrm{f}(\mathrm{x})=\mathrm{x}^{4}+4 \mathrm{x}^{3}-8 \mathrm{x}^{2}+$ CL Cv $(x)=4 x^{3}+12 x^{2}-16 x$ $0=4 x\left(x^{2}+3 x-4\right)$ $0=4 x(x+4)(x-1)$

$f^{\prime \prime}(x)=12 x^{2}+24 x-16$

$$
0=4\left(3 x^{2}+6 x-4\right)
$$

ZOA
$0=4\left(3 x^{2}+6 x-4\right)$
$0 \neq 4) 0=3 x^{2}+6 x-4$

poesn't fer tor. Quad Formula $0 \approx(x+2.5) \rho(x-0.5)$ | $0=x+2.5$ | $x-0.5=0$ |
| :--- | :--- |
| $2.5=x$ | $x=0.5$ |

$C v: x=-2.5,0.5$
\#10) $\quad f(x)=(2 x-6)^{4}$

\#11) $\quad \mathrm{f}(\mathrm{x})=3 \mathrm{x}+5$

\#12)

$$
C_{V}^{f(x)}=x^{3}+x^{2}-x+4
$$

$f^{\prime}(x)=3 x^{2}+2 x-1$ $0=\left(3 x^{2}-x\right)+(3 x-1)$

$$
0=x(3 x-1)+1(3 x-1)
$$

$$
0=(3 x-1)(x+1)
$$

$$
\begin{gathered}
201 \\
0=(3 x-1)(x+1) \\
0=3 x-1 \quad 0=x+1 \\
1=3 x \\
\frac{1}{3}=x \\
(v: x=-1=x \\
\left(v a \frac{1}{3}\right.
\end{gathered}
$$

Graphing \& Basic Optimization
5.1A - Graphing Using Derivatives

Sketch the graph of each function by hand using a sign diagram. (On day 1, use first derivative sign diagram. On day two, use the second derivative sign diagram.)
\#13) $\mathrm{f}(\mathrm{x})=\mathrm{x}^{3}-3 \mathrm{x}^{2}-9 \mathrm{x}+10$
(1)

$$
\begin{gathered}
C v \\
f^{\prime}(x)=3 x^{2}-6 x-9 \\
0=3\left(x^{2}-2 x-3\right) \\
0=3(x-3)(x+1) \\
20 N \\
0=3(x-3)(x+1) \\
0 \neq 3) 0=x-3\} \begin{array}{l}
0=x+1 \\
3=x
\end{array} \\
C v: x=-1,3
\end{gathered}
$$

(2)

$$
\begin{aligned}
& c P \\
& f(-1)=15 \\
& f(3)=-17 \\
& c P:(-1,15),(3,-17)
\end{aligned}
$$

(3)

$$
\begin{gathered}
f^{\prime}(x)=3(x-3)(x+1) \\
f^{\prime}(x)=+(x-3)(x+1) \\
(+)(-)(-)=+1 \quad f^{\prime}<0 \quad 1 \quad f^{\prime}>0 \\
f^{\prime}>0 \quad 1 \\
\frac{1}{1}+2,(t)=-1
\end{gathered}
$$

$$
\begin{array}{r}
y \text {-int } \\
f(0)=10
\end{array}
$$

(4)

$$
\begin{aligned}
& f^{\prime \prime}(x)=6 x-6 \\
& 0=6(x-1) \\
& 200 t \\
& 0=6(x-1) \\
& 0 \neq 6\left\{\begin{array}{l}
0=x-1 \\
1=x \\
\text { cu: } x=1
\end{array}\right.
\end{aligned}
$$

(5)

$$
\begin{aligned}
& f(1)=-1 \\
& c p:(1,-1)
\end{aligned}
$$

(6)

$$
\begin{aligned}
f^{\prime \prime}(x) & =6(x-1) \\
f^{\prime \prime}(x) & =+(x-1)
\end{aligned}
$$

concur $(1-1)$ concave Dow IP UP

Graphing \& Basic Optimization
5.1A - Graphing Using Derivatives
\#14) $\quad f(x)=x^{4}+4 x^{3}-8 x^{2}+64$
(1)

$$
\begin{aligned}
& f^{\prime}(x)=4 x^{3}+12 x^{2}-16 x \\
& 0=4 x\left(x^{2}+3 x-4\right) \\
& 0=4 x(x+4)(x-1) \\
& \text { ZOA } \\
& \begin{array}{l}
0=4 x(x+4)(x-1) \\
0=4 x \\
0=x
\end{array}\left\{\begin{array}{l}
x+4=0 \\
x=-4
\end{array} \left\lvert\, \begin{array}{l}
x-1=0 \\
x=1 \\
\text { cu: } x=-4,0,1
\end{array}\right.\right.
\end{aligned}
$$

(2)

$$
\begin{gathered}
C P \\
f(-4)=-64 \\
f(0)=64 \\
f(1)=61 \\
C P:(-4,-64),(0,64),(1,61)
\end{gathered}
$$

(4)

$$
(5) \quad \begin{aligned}
& C P \\
& f(-0.5)=-9.4 \\
& f(0.5) \\
& \approx 62.6 \\
& C P(-0.5,-9.4),(0.5,60.6)
\end{aligned}
$$

(6)

$$
f^{\prime \prime}(x)=4(x+2.5)(x-0.5)
$$

concave IP $(-2.5,-9.4)$ concave down $^{\text {co. }}(0.5,0.6$ con cove

$$
\begin{aligned}
& f^{\prime \prime}(x)=12 x^{2}+24 x-16 \\
& 0=4\left(3 x^{2}+6 x-4\right) \\
& \text { 2014 } \\
& 0=4\left(3 x^{2}+6 x-4\right) \\
& 0 \neq 4) 0=3 x^{2}+6 x-4 \\
& \text { DOesn't factor. QUAD for tula } \\
& 0 \approx(x+7.5)(x-0.5) \\
& \begin{array}{l|l}
0=x+2.5 & x-0.5=0 \\
2.5=x & x=0.5
\end{array} \\
& \begin{array}{l}
-2.5=x \quad C_{v}: x=-2.5,0.5
\end{array} \quad x=0.5
\end{aligned}
$$

(3)

$$
\begin{aligned}
& (-)(-)(-)=-1(-)(t)(-)=+i(t)(t)(-)=-1,1(t)(t)(t)=+ \\
& f^{\prime}<0 \quad f^{\prime}>0, \quad f^{\prime}<0!\quad f^{\prime}>0 \\
& \xrightarrow[-5]{\stackrel{1}{5} \quad f^{\prime}(-4)=0^{-1} f^{\prime}(0)=0 \quad \frac{1}{2} \quad f^{\prime}(1)=0 \quad 2} \\
& \searrow \underset{\text { MIN }}{(-4,-6 u)}>\stackrel{M A K}{(0,0)} \searrow \frac{(1,61)}{M / M}
\end{aligned}
$$

Graphing \& Basic Optimization
5.1A - Graphing Using Derivatives

$$
\begin{aligned}
& \text { \#15) } f(x)=-x^{4}+4 x^{3}-4 x^{2}+1 \\
& c v \\
& f^{\prime}(x)=-4 x^{3}+12 x^{2}-8 x \\
& 0=-4 x\left(x^{2}-3 x+2\right) \\
& 0=-4 x(x-1)(x-2) \\
& 20 N
\end{aligned} \begin{aligned}
& 0=-4 x(x-1)(x-2) \\
& 0=-4 x \\
& 0=x \quad \begin{array}{l}
0=x-1 \\
1=x \\
(v: x=0,1,2 \\
2=x
\end{array}
\end{aligned}
$$

(1)
$C P$
(2)

$$
\begin{aligned}
& f(0)=1 \\
& f(1)=0 \\
& f(2)=1 \\
& c p:(0,1),(1,0),(2,1)
\end{aligned}
$$

$$
\begin{equation*}
f^{\prime}(x)=-4 x(x-1)(x-2) \tag{3}
\end{equation*}
$$

$$
\left.(-)(-)(-)(-)=\sum_{+}^{1}(t)(t)(-)(-)_{1}^{1}(-)(t)(+x)\right)_{1}^{1}(t)(t)(t)(t)
$$

7

$$
\begin{aligned}
& y-i n t \\
& f(0)=1
\end{aligned}
$$

(4)

C
$f^{\prime \prime}(x)=-12 x^{2}+24 x-8$
$0=-4\left(3 x^{2}-6 x+2\right)$
zont
$0=-4\left(3 x^{2}-6 x+2\right)$
$0 \neq 4 \quad 3 x^{2}-6 x+2=0$
$\begin{aligned} & \text { Doeshn' FATORR. Quito Form } \\ & (x-0.4)(x-1.6) \geq 0\end{aligned}$
$(x-0.4)(x-1.6)=0$
$x-0.4=0 \quad x-1.6=0$
$x=0.4 \quad x=1.6$
cu: $x=0.4,1.6$
(5)

$$
\begin{aligned}
& f(0.4)=0.6 \\
& f(1.6) \approx 0.6 \\
& c P:(0.4,0.6),(1.6,0.6)
\end{aligned}
$$

(6) $f^{\prime \prime}(x)=-4(x-0.4)(x-1.6)$

$(-)(-)(-)$	1	$(-)(t)(-)$	1
-	1	+	$(+)(t)$
$f^{\prime \prime}<0$	1	$f^{\prime \prime}>0$	1
L	1	$f^{\prime \prime}<0$	
0	$f^{\prime \prime}(0.4)=0$	1	$f^{\prime \prime}(1.6)=0$

Graphing \& Basic Optimization
5.1A - Graphing Using Derivatives
\#16) $f(x)=3 x^{4}-8 x^{3}+6 x^{2}$
(1)

$$
\begin{gathered}
f^{\prime}(x)=10 x^{3}-24 x^{2}+12 x \\
0=12 x\left(x^{2}-3 x+1\right) \\
0=12 x(x-1)^{2} \\
20 N \\
0=12 x(x-1)^{2} \\
0=0 x \quad\left\{\begin{array}{l}
0=(x-1)^{2} \\
0=x-1 \\
1=x
\end{array}\right. \\
0=x \quad C V: x=0,1
\end{gathered}
$$

C P
(2)

$$
\begin{aligned}
& f(0)=0 \\
& f(1)=1 \\
& C P(0,0),(1,1)
\end{aligned}
$$

(3) $f^{\prime}(x)=12 x(x-1)^{2}$

(ㄱ)

$$
\begin{array}{r}
y \text {-int } \\
f(0)=0
\end{array}
$$

(4)

$$
\begin{gathered}
f^{\prime \prime}(x)=36 x^{2}-48 x+12 \\
0=12\left(3 x^{2}-4 x+1\right) \\
0=12(x-1)(3 x-1) \\
20 N \\
0=12(x-1)(3 x-1) \\
0 \neq 12\left\{\begin{array}{l}
0=x-1\} \\
1=x
\end{array} \begin{array}{l}
0=3 x-1 \\
1=3 x \\
1 / 3=x
\end{array}\right. \\
\operatorname{Cu:x=1/3,1}
\end{gathered}
$$

(5)

$$
\begin{aligned}
& f\left(\frac{1}{3}\right)=0.4 \\
& f(1)=1 \\
& C P\left(\frac{1}{3}, 0.4\right),(1,1)
\end{aligned}
$$

(6)

concave IP concerp IP concare UP $\left(\frac{1}{3}, 0.4\right)$ DN (1.1) UP

Graphing \& Basic Optimization
5.1A - Graphing Using Derivatives
\#17) $\quad \mathrm{f}(\mathrm{x})=(\mathrm{x}-1)^{6}$
$c \checkmark$
(1)

$$
\begin{gathered}
f^{\prime}(x)=6(x-1)^{5} \\
0=6(x-1)^{5} \\
Z 0 N \\
0=6(x-1)^{5} \\
0 \neq 6\left\{\begin{array}{l}
0=(x-1)^{5} \\
0=x-1 \\
1=x \\
C v: x=1
\end{array}\right.
\end{gathered}
$$

(2)

$$
\begin{gathered}
C P \\
\begin{array}{l}
f(1)=0 \\
C P(1,0)
\end{array}
\end{gathered}
$$

(3)

$$
f^{\prime}(x)=6(x-1)^{5}
$$

$$
(t)(-)=-\quad 1 \quad(t)(t)=+
$$

$$
\underset{0}{\frac{f^{\prime}<0 \quad:}{1} \quad f^{\prime}(1)=0}
$$

$$
\underset{\text { MIM }}{(1,0)}
$$

(7)

$$
\frac{y-i n^{t}}{f(0)=1}
$$

(4)

$$
\begin{gathered}
f^{\prime \prime}(x)=30(x-1)^{4} \\
0=30(x-1)^{4} \\
\text { ION } \\
0=30(x-1)^{4} \\
0=30\left\{\begin{array}{c}
0=(x-1)^{4} \\
0=x-1 \\
1=x \\
C v: x=1
\end{array}\right.
\end{gathered}
$$

(5)
(6) $f^{\prime \prime}(x)=30(x-1)^{4}$

concave
UP thing concave
$U P$

Graphing \& Basic Optimization
5.1A - Graphing Using Derivatives
\#18) $f(x)=\left(x^{2}-4\right)^{2}$
(1)

$$
\begin{aligned}
& f^{\prime}(x)=2\left(x^{2}-4\right) \cdot(2 x) \\
& 0=4 x\left(x^{2}-4\right) \\
& 0=4 x(x-2)(x+2) \\
& \text { ZOe } \\
& 0=4 x(x-2)(x+3) \\
& 0=4 x\left\{\begin{array}{l}
0=x-2) \\
0=x+2 \\
0
\end{array}\right. \\
& 0=x\left\{\begin{array}{l}
0=x
\end{array}\right\}-2=x \\
& \text { Cv: } x=-2,0,2
\end{aligned}
$$

(2)

$$
\begin{gathered}
C P \\
\begin{array}{l}
f(\cdot 2)=0 \\
f(0)=16 \\
f(2)=0 \\
C P(-2,0),(0,16),(2,0)
\end{array}
\end{gathered}
$$

(3) $\quad f^{\prime}(x)=4 x(x-3)(x+2)$

$$
\begin{aligned}
& (+)(-)(-)(-)=(-)|(t)(-)(-)(t)=(t)|(+)(+)(-)(+)=(x)(+)(+)(+)(+)=(+) \\
& \xrightarrow[f^{\prime}(-2)=0]{\substack{f^{\prime}<0 \\
f^{\prime} \\
f^{\prime}(0)=0 \\
f^{\prime} \\
f^{\prime}(2)=0}} \\
& \underset{\text { MIN }}{(-2.0)}
\end{aligned}
$$

(4)

CV

$$
\begin{gathered}
f^{\prime}(x)=4 x^{3}-16 x \\
f^{\prime \prime}(x)=12 x^{2}-16 \\
0=4\left(3 x^{2}-4\right) \\
20 N \\
\begin{array}{l}
0=4\left(3 x^{2}-4\right) \\
074 \quad \begin{array}{l}
0 \\
0 \\
4=3 x^{2}-4 \\
x^{2}
\end{array} \\
\frac{4}{3}=x^{2} \\
\pm \sqrt{\frac{4}{3}}=x \\
c v: x=-\sqrt{\frac{4}{3}}, \sqrt{\frac{4}{3}}
\end{array} \\
c P \\
\begin{array}{l}
f\left(-\sqrt{\frac{4}{3}}\right) \approx 7.1 \\
f\left(\sqrt{\frac{4}{3}}\right) \approx 7.1 \\
c p\left(-\sqrt{\frac{4}{3}}, 7.1\right),\left(\sqrt{\frac{4}{3}}, 7.1\right)
\end{array}
\end{gathered}
$$

(6) $f^{\prime \prime}(x)=4\left(3 x^{2}-4\right)$
$(+)(+)=+\quad 1(+)(-)=-1(t)(t)=+$

concave IP concave IP concave $\cup P\left(-\sqrt{\frac{4}{3}}, 7.1\right)$ down $\left(\sqrt{\frac{4}{3}}, 7.1\right) \cup P$

7

$$
\begin{aligned}
& y \text {-int } \\
& f(0)=16
\end{aligned}
$$

