A: Find the absolute extreme values of each function on the interval given.
\#1) $f(x)=x^{3}-6 x^{2}+9$ on $[-3,3]$

$$
\begin{aligned}
& f^{\prime}(x)=3 x^{2}-12 x \\
& 0=3 x(x-4) \\
& 0=3 x \quad 0=x \cdot 4 \\
& 0=x \quad\langle 4=x \\
& C v: x=0,4 \quad 4 \in[-3,3] \\
& \varepsilon v: x=-3,3 \\
& f(0)=9 \quad \text { MAX } \\
& f(-3)=-72 \text { MIN } \\
& f(3)=-18 \\
& C P:(0,9) \\
& \{p:(-3,-72),(3,-18)
\end{aligned}
$$

$$
\begin{aligned}
& \operatorname{MAX}(0,9) \\
& \operatorname{MIN}(-3,-72)
\end{aligned}
$$

$$
\text { 42) } \begin{aligned}
f(x) & =x(x-10) \text { on }[-10,10] \\
f(x) & =x^{2}-10 x \\
f^{\prime}(x) & =2 x-10 \\
0 & =2 x-10 \\
10 & =2 x \\
5 & =x \\
c v: x & =5
\end{aligned}
$$

$$
\varepsilon v: x=-10,10
$$

$$
f(5)=-25 \mathrm{M} / \mathrm{N}
$$

$$
f(-10)=200 \mathrm{MAx}
$$

$$
f(10)=0
$$

$$
C p:(5,-25)
$$

$$
(P:(-10,200),(10,0)
$$

$$
\begin{aligned}
& \operatorname{MAX}(-10,200) \\
& M / N(5,-25)
\end{aligned}
$$

\#3) $f(x)=\sqrt[3]{x^{2}}$ on $[-2,10]$

$$
f(x)=x^{2 / 3}
$$

$$
f^{\prime}(x)=2 / 3 x^{-1 / 3}
$$

$$
0=\frac{2}{3 \sqrt{x}}
$$

204 2.0.0
$0 \neq 2$
$\varepsilon v: x=-2,10$

$$
\begin{aligned}
& f(6)=0 \\
& f(-2)=1.6 \\
& f(10)=4.6 \text { MAX } \\
& C P:(0.0) \\
& \{P:(10,4.6),(-3,1 \\
& \operatorname{MAX}(10,4.6) \\
& \operatorname{MIN}(0,0)
\end{aligned}
$$

$$
\{p:(10,4.6),(-2,1.6)
$$

$$
\begin{aligned}
& \text { \#4) } f(x)=\frac{1}{x^{2}+4} \text { on }[-4,4] \\
& f(x)=\left(x^{2}+4\right)^{-1} \\
& f^{\prime}(x)=-1\left(x^{2}+4\right)^{-2} \cdot\left(x^{2}+4\right)^{\prime} \\
& 0=\frac{-2 x}{\left(x^{2}+4\right)^{2}} \\
& Z 0 \mathrm{ZOD} \\
& \begin{array}{l}
0=-2 x \\
0=x
\end{array} \begin{array}{l}
0=\left(x^{2}+4\right)^{2} \\
0=x^{2}+4 \\
-4=x^{2} \\
\pm \sqrt{-4}=x \\
x=d n e
\end{array} \\
& \text { CV:x=0 }
\end{aligned}
$$

Cv: $x=-4.4$

$$
\begin{aligned}
& f(0)=.25 \\
& \mathrm{MAx} \\
& f(-4)=.05 \\
& \mathrm{MiN} \\
& f(4)=.05 \\
& \mathrm{mlN} \\
& C P:(0,0.25) \\
& (p:(-4,0.05),(4,0.05)
\end{aligned}
$$

$$
\begin{aligned}
& \operatorname{MAx}(0,0.25) \\
& \operatorname{MIN}(-4,0.05),(4,0.05)
\end{aligned}
$$

Graphing \& Basic Optimizing

5.3A - Maximizing Profit

Jimmy Crack Corn

\#5) Jimmy Crack Corn finds that it costs $\$ 22$ to crack each corn, and fixed costs are $\$ 38$ per day. The price function is $p(x)=40-3 x$, where p is the price (in dollars) at which exactly x cracks will be sold. Find the quantity Jimmy Crack Corn should produce and the price he should charge to maximize profit. Also find the maximum profit.

$C(x)$	$=22 x+38$
$R(x)$	$=p(x) q^{+y}$
	$=(40-3 x) x$
$R(x)$	$=40 x-3 x^{2}$
$P(x)$	$=R(x)-C(x)$
	$=\left(40 x-3 x^{2}\right)-(22 x+38)$
$P(x)$	$=-3 x^{2}+18 x-38$

$$
\begin{aligned}
P^{\prime}(x) & =-6 x+18 \\
0 & =-6 x+18 \\
6 x & =18 \\
x & =3
\end{aligned}
$$

$P^{\prime \prime}(x)=-6$
$P^{\prime \prime}(3)=n e g, C C D, M A x$

$$
\begin{aligned}
P(3) & =-3(3)^{2}+18(3)-38 \\
& =-3(9)+54-38 \\
& =-27+16 \\
P(3) & =-811
\end{aligned}
$$

$$
\begin{aligned}
p(3) & =40-3(3) \\
& =40-9 \\
p(3) & =31
\end{aligned}
$$

Sentence Answer:
In order to maximize his profit, George should \& \& 11 cracked corns at \$31, giving him a max profit of $-\$ / 1$.

Lady McButter Pants

\#6) Lady McButter Pants finds that it costs $\$ 200$ to manufacture each pair of butter paints, and fixed costs are $\$ 1500$ per day. The price function is $p(x)=380-9 x+13000 x^{-1}$, where p is the price (in dollars) at which exactly x pants will be sold. Find the quantity Lady McButter Pants should produce and the price she should charge to maximize profit. Also find the maximum -profit.

$C(x)$	$=200 x+1500$
$R(x)$	$=P(x) q^{t y}$
	$=\left(380-9 x+13000 x^{-1}\right) x$
$R(x)$	$=380 x-9 x^{2}+13,000$
$P(x)$	$=R(x)-C(x)$
	$=\left(380 x-9 x^{2}+13,000\right)-(200 x+1500)$
$P(x)$	$=-9 x^{2}+180 x+11500$

$$
\begin{aligned}
p^{\prime}(x) & =-18 x+180 \\
0 & =-18 x+180 \\
18 x & =180 \\
x & =10
\end{aligned}
$$

$p^{\prime \prime}(x)=-18$
$P^{\prime \prime}(10)=$ neg. CCD, MAx

$$
\begin{aligned}
P(10) & =-9(10)^{2}+180(10)+11500 \\
& =-9(100)+1800+11500 \\
& =-900+1800+11,500 \\
& =900+11,500 \\
P(10) & =5,2,400
\end{aligned}
$$

```
\(p(10)=380-9(10)+13000(10)^{-1}\)
    \(=380-90+1300\)
    \(=290+1300\)
\(p(10)=1590\)
```

Sentence Answer:

In order to max profit at $\$ / 2,400$, Lady m'Butter Pants should sell 10 pants at \$/590 each.

Graphing \& Basic Optimizing

5.3A - Maximizing Profit

Floppy Inc

\#7) Floppy Inc finds that it costs $\$ 85$ to manufacture each pair of Flippies. The price function is $p(x)=$ $481-9 x+30 x^{-1}$, where p is the price (in dollars) at which exactly x Flippies will be sold. Find the quantity Floppy Inc should produce and the price it should charge to maximize profit. Also find the maximum profit.

$C(x)$	$=85 x \quad$ (Fixed costs are not
$R(x)$	$=p(x) q^{t} y$
	$=\left(481-9 x+30 x^{-1}\right) x$
$R(x)$	$=-9 x^{2}+481 x+30$
$P(x)$	$=R(x)-C(x)$
	$=\left(-9 x^{2}+481 x+30\right)-(85 x)$
	$=-9 x^{2}+396 x+30$
$P^{\prime}(x)$	$=-18 x+396$
0	$=-18 x+396$
$18 x$	$=396$
x	$=22$
$P^{\prime \prime}(x)$	$=-18$
$P^{\prime \prime}(22)$	$=$ neg, CCD, MAx

$$
\begin{aligned}
P(22) & =-9(22)^{2}+396(22)+30 \\
& =-9(484)+8712+30 \\
& =-4356+8742 \\
P(22) & =\$ 386
\end{aligned}
$$

Sentence Answer:

$$
\begin{aligned}
p(22) & =481-9(22)+30(22)^{-1} \\
& =481-198+\frac{30}{22} \\
& =283+\frac{15}{11} \\
p(22) & =284.36
\end{aligned}
$$

To max profit at $\$ 4386$, Floppy Inc needs to Sell 22 Flippies at $\$ 284.36$ each

Brick House Company

\#8) The Brick House Company finds that it costs $\$ 7$ to manufacture each toilet, and fixed costs are $\$ 20,000$ per day. The price function is $p(x)=$ $307-2 x+40,000 x^{-1}$, where p is the price (in dollars) at which exactly x toilets will be sold. Find the quantity the Brick House Company should produce and the price it should charge to maximize profit. Also find the maximum profit.

$$
\begin{aligned}
C(x) & =7 x+20,000 \\
R(x) & =P(x) q t y \\
& =(307-2 x+40,000 x \\
R(x) & =-2 x^{2}+307 x+40,00 \\
P(x) & =R(x)-C(x) \\
& =\left(-2 x^{2}+307 x+40,000\right)- \\
P(x) & =-2 x^{2}+300 x+20,000 \\
P^{\prime}(x) & =-4 x+300 \\
0 & =-4 x+300 \\
4 x & =300 \\
x & =75 \\
P^{\prime \prime}(x) & =-4 \\
P^{\prime \prime}(75) & =n e g, C C D, \mu A x
\end{aligned}
$$

$$
\left.\begin{array}{l}
P(75)=-2(75)^{2}+300(75)+20,000 \\
\\
=-2(5625)+22,500+20,000 \\
\end{array}=-11,250+42,500\right] \begin{aligned}
& P(75)={ }^{8} 31,250 \\
& \begin{aligned}
p(75) & =307-2 x+40,000 x^{-1} \\
& =307-2(75)+40,000(75)^{-1} \\
& =307-150+\frac{40,000}{75} \\
& =157+\frac{40,000}{75}
\end{aligned} \\
&\text { Sentence Answer: } \left.\quad \begin{array}{l}
p(75)
\end{array}\right)=690.33
\end{aligned}
$$

To max profit at $\$ 31,250$, Br rick House needs to sell 75 toilets at $\$ 690.33$

