Section 4.1-4.3

1. The position of a particle, in meters, traveling on a straight line is given by $x(t)$ for $0 \leq t \leq 8$, where t is in seconds. The graph of $x(t)$ is shown below.

A. The particle is furthest to the left when $t=5$.
B. The particle is moving away from the origin at $t=6$.
C. The particle is furthest to the right when $t=1$.
D. The speed of the particle is faster at $t=2$ than at $t=3$.
E. The particle is moving toward the origin at $t=2$.
F. The particle is at rest when $t=2.5$.
G. The particle is at rest twice on the interval $[0,8]$.
H. The particle is moving towards the right at $t=6$.
I. The average velocity on $[1,7]$ is 0 meters per second.

The code for page is 1 is the sum of the "true" statements above \qquad

1

Calc-Medic

Section 4.1-4.3
2. The velocity of an ant for $0 \leq t \leq 4$ is given by $v(t)=2 t(t-3)^{2}$ where $v(t)$ is in inches per minute and t is in minutes. The graph of $v(t)$ is shown below.

A. The ant is at rest at $t=0$ and $t=3$.
B. The ant changes direction at $t=3$.
C. The acceleration of the ant is always positive.
D. The ant is moving the fastest at $t=1$ and $t=4$.
E. The ant is speeding up when $t=2$.
F. The ant is speeding up when $t=4$.
G. At $t=1$, the ant is moving towards the right.
H. The average acceleration of the ant is positive over the interval $[0,4]$.
I. The acceleration of the ant is 0 at $t=1$.

The code for page is 2 is the sum of the "true" statements above \qquad

Crack the Code
 Calc-Medic
 Section 4.1-4.3

3. The rate at which people enter an auditorium for a rock concert is modeled by the function R given by $R(t)=1380 t^{2}-675 t^{3}$ for $0 \leq t \leq 2$ hours. $R(t)$ is measured in people per hour. No one is in the auditorium at $t=0$ when the doors open. The doors close and the concert begins at time $t=2$.
A. $R^{\prime}(t)$ represents the rate at which people are entering the auditorium.
B. At $t=1$, the rate at which people are entering the auditorium is increasing at a rate of 735 people/hour per hour.
C. At $t=1$, the rate at which people are entering the auditorium is increasing at a rate of 735 people/hour.
D. At $t=1$, the rate at which people are entering the auditorium is 735 people/hour per hour.
E. At $t=1$, the rate at which people are entering the auditorium is 735 people/hour.
F. At $t=1$, the rate at which people are entering the auditorium is 705 people/hour.
G. At $t=1$, the rate at which people are entering the auditorium is 705 people/hour per hour.
H. At $t=1$, the rate at which people are entering the auditorium is increasing by 705 people/hour per hour.
I. The rate that people enter the auditorium is slower at $t=1$ than at $t=1.75$.

The code for page is 3 is the sum of the "true" statements above \qquad

Crack the Code
 Calc-Medic
 Section 4.1-4.3

4. The rate at which rainwater flows into a drainpipe is modeled by the function R, where $R(t)=20 \sin \left(\frac{t^{2}}{35}\right)$ cubic feet per hour, t is measured in hours and $0 \leq t \leq 8$. The pipe is partially blocked, allowing water to drain out the other end of the pipe at a rate modeled by $D(t)=-.04 t^{3}+0.4 t^{2}+0.96 t$ cubic feet per hour, for $0 \leq t \leq 8$. There are 30 cubic feet of water in the pipe at time $t=0$.
A. The amount of water in the tank is increasing at $t=3$.
B. The rate at which water is draining from the pipe at $t=1$ is 1.64 cubic feet per hour.
C. The rate at which water is draining from the pipe at $t=1$ is 1.32 cubic feet per hour.
D. The rate at which water is draining from the pipe at $t=1$ is increasing at a rate of 1.64 cubic feet per hour per hour.
E. The volume of water in the pipe at $t=4$ is decreasing at a rate of 1.148 cubic feet per hour.
F. The volume of water in the pipe is not changing for some time t on $[2,5]$.
G. The rate at which rainwater flows into the pipe and the rate at which the rainwater leaks from the pipe is the same at $t=0$.
H. At $t=2$, more water is draining from the pipe than is flowing into the pipe.
I. The rate of change of volume in the tank is given by $30+R(t)-D(t)$

The code for page is 4 is the sum of the "true" statements above \qquad

