Calculus

2.1 Average Rate of Change

Name:

Notes

Recall: Rate of Change

rilin

Slope =
$$\frac{y_2 - y_1}{x_2 - x_1} = \frac{\Delta y}{\Delta x} = \frac{\text{dependent unit}}{\text{Independent unit}}$$

hour

erage Rate of Change: A continuous function f(x) on the interval [a,b] has an average rate of change of **Average Rate of Change:**

$$\frac{f(b)-f(a)}{b-a}$$
 or $\frac{f(a)-f(b)}{a-b}$

$$\frac{f(a) - f(b)}{a - b}$$

This is also the <u>Secont</u> line.

$$f(\frac{3}{2}) = 0.375$$

Example 1: Find the average rate of change of $f(x) = x^3 - 2x$ on the interval $\left[\frac{1}{2}, \frac{3}{2}\right]$ $ARC = \frac{f(b) - f(a)}{b - a}$ F(3) - f(4)= \frac{3}{4(\frac{4}{7})-\frac{4}{7}} $= \frac{0.375 - (-0.875)}{2}$ $= \frac{1.25}{1}$

Example 2: The function $h(k) = 3k^2 - k$ represents how long it takes Mr. Brust to clean his house where h is measured in hours and k is measured in the number of kids Mr. Brust has. What is the average rate it takes to clean his house if he has between 1 and 4 kids? kids?

$$h(4) = 3(4)^{2} - (4)$$

$$= 3(16) - 4$$

$$= 48 - 4$$

$$h(4) = 44$$

$$h(1) = 3(1)^{2} - (1)$$

$$= 3 \cdot (1) - 1$$

$$= 3 - 1$$

$$h(1) = 2$$

2.1 Average Rate of Change

Notes

Write your questions and thoughts here!

Example 3: Find the average rate of change for $f(x) = x^2 - 4x + 1$ on the interval

Slope of the Secant Line:

Given a function f, the equation for the slope of the secant line is

Slop
$$=$$
 $\frac{f(x+h)-f(x)}{(x+h)-(x)} = \frac{f(x+h)-f(x)}{h}$

