#### Calculus

Write your questions and thoughts here!

## 2.3 Differentiability

Name:

A graph of a function is shown below. Write down its equation on line #1.

**Notes** 



- 1. y = 2x + | (No scale)
- 2. y = 2x + 0.00 ( roo much Zoom )
- 3.  $y = \frac{\sin(2x) + 0.001}{\sin(2x)}$

# Differentiability: (Slope

The derivative exists for each point in the domain. In other words, the graph looks like a line if you zoom in ( local linearity ).

The derivative fails to exist where the function has a

- 1. Discontinuity 2. Corner or cusp point
- 3. Vertical tangent

(True or False

True of False

Differentiability implies continuity.

Continuity implies differentiability.

#### Mean Value Theorem:

If a function f is differentiable (and thereby continuous) over the interval (a,b), then there exists a point <u>u</u> within that open interval where the instantaneous rate of change equals the average rate of change over the interval.



**NOTES** Page 22 of 50

#### Write your questions and thoughts here!

## 2.3 Differentiability

1.  $f(x) = -2x^2 + 16x - 26$ ;  $4 \le x \le 6$ 

**Notes** 

Given f(x) and f'(x) on a given interval [a, b], find a value c that satisfies the Mean Value



$$f'(x) = -4x + 16$$

$$f'(x) = -3(6)^{2} + 16(6) - 36$$

$$= -3(36) + 96 - 36$$

$$= -72 + 70$$

$$f(6) = -3$$

$$= -2(6) + 64 - 36$$

$$= -32 + 38$$

$$f(4) = 6$$

$$A2C$$

#### **Derivatives and Calculators:**

Using the calculator to find the value of the derivative at a point.

2. Find the value of 
$$f'(0.57)$$
 if  $f(x) = \frac{x^3}{\ln x}$ 

2. Find the value of  $f'(0.57)$  if  $f(x) = \frac{x^3}{\ln x}$ 

2. Find the value of  $f'(0.57)$  if  $f(x) = \frac{x^3}{\ln x}$ 

2. Find the value of  $f'(0.57)$  if  $f(x) = \frac{x^3}{\ln x}$ 

3. 3

4. 3. (0.57)

5. 3. (0.57)

6. fMin(7. fMax)

#### Graph of a function f and its derivative f'

Focus on the <u>Slope</u> of f. The <u>Slope</u> of f is the <u>Y-value</u> of f'.

BLUE = f'