Notes

Velocity, Speed, and Acceleration

Mr Bean is playing catch with his best friend, himself. He throws a tennis ball straight up into the air. The height of the ball is modeled by $s(t)=-4.9t^2+18t+2$ where t is time in seconds and s is the height of the ball from the ground in meters

Speed = | velocity

Particle Motion

The position (x-coordinate) of a particle moving on the x-axis is by $x(t) = t^3 - 4t^2 + 3$ for $t \ge 0$.

Find the displacement of the particle during the first 2 seconds

Find the average velocity of the particle during the first 4 seconds

$$A V = \frac{\chi(b) - \chi(a)}{b - a}$$

$$= \frac{\chi(a) - \chi(a)}{(a) - (a)}$$

$$= \frac{(-c) - (a)}{a}$$

$$= \frac{(-c) - (a)}{a}$$

$$= \frac{-8}{a}$$

$$A V = -4 \text{ unds/sc}$$

Find the instantaneous velocity of the particle when t = 4.

$$\sqrt{(4)} = 3(4)^2 - 8(4)$$

= 3(16) - 37
= 48-32
 $\sqrt{(4)} = 16$ units/sc

Find the acceleration of the particle when t = 4. Describe the motion of the particle.

3.3 Velocity and Other Rates of Change

Particle Motion

The figure shows the velocity v = x(t) of a particle moving on a coordinate line.

When does the particle move right? Move left? Speed up? Slow down?

When is the particle's acceleration Positive? Negative? Zero?

Positive: (2,6) negative: (0,2)4(4,7)

When does the particle have the greatest speed?

Verbally and Algebraically

The area of circle whose radius is measured in inches.

 $A(4) = \pi (4)^{2} = 16\pi \text{ in}^{2}$

when the radius is 4 inches, the area is 1617 in 2

$$\frac{df}{dx}\Big|_{x=4}$$

$$A'(4) = 2\pi(4) = 8\pi \text{ in}/\text{In}$$

when the radius is 4 inches, the area is growing by 817 in 2 per inch

Average rate of change from 3 to 5

$$A = \pi r^{2}$$

$$ARC = \frac{A(s)}{(s)}$$

$$= \frac{2s\pi}{2}$$

$$ARC = \frac{16\pi}{2} = \frac{3}{2}$$

Graphically

Tangent

Compare these slopes

$$H'(4) = \bigcirc$$

Average rate of change 0 to 3

$$=\frac{9.00-30}{3-0}=\frac{870}{3}$$

Calculators Produced (in hundreds)	6	7.5	8	10	11	12
Profit	14	12.8	11	13.2	14.2	15.3

Approximate P'(9)

ARC =
$$\frac{P(10) - P(8)}{10 - 8}$$
= $\frac{13.2 - 11}{10 - 8}$
= $\frac{2.2}{3}$
= 1. 1 + house cales.