\qquad
\qquad / 4

Two Lies and a Truth Activity: Topic 1.6

For each of the following limit problems, three solutions are provided. Two of the solutions show an incorrect answer where one solution shows a correct answer. Circle True if the solution is correct, or true, or circle Lie if the solution is incorrect, and thus a lie. For each solution this is a "lie," circle where error occurs.

Problem 1 $\lim _{x \rightarrow 1} \frac{x^{3}-1}{x^{2}+7 x-8}$	$\begin{aligned} & \lim _{x \rightarrow 1} \frac{x^{3}-1}{x^{2}+7 x-8} \\ & =\lim _{x \rightarrow 1} \frac{(x-1)(x-1)(x-1)}{(x-1)(x+8)} \\ & =\lim _{x \rightarrow 1} \frac{(x-1)^{2}}{x+8} \\ & =-\frac{0^{2}}{9} \\ & =0 \end{aligned}$ True Lie The factoring is incorrect for the difference of two cubes.	$\begin{aligned} & \lim _{x \rightarrow 1} \frac{x^{3}-1}{x^{2}+7 x-8} \\ & =\lim _{x \rightarrow 1} \frac{(x-1)\left(x^{2}+x+1\right)}{(x-1)(x+8)} \\ & =\lim _{x \rightarrow 1} \frac{x^{2}+x+1}{x+8} \\ & =\frac{3}{9} \text { or } \frac{1}{3} \end{aligned}$ True Lie	$\begin{aligned} & \lim _{x \rightarrow 1} \frac{x^{3}-1}{x^{2}+7 x-8} \\ & \quad=\lim _{x \rightarrow 1} \frac{(x-1)(x-x+1)}{(x-1)(x+8)} \\ & \quad=\lim _{x \rightarrow 1} \frac{x^{2}-x+1}{x+8} \\ & \quad=\frac{1}{9} \end{aligned}$ True Lie The factoring is incorrect for the difference of two cubes. The circled sign should be a "plus."
Problem 2 $\lim _{x \rightarrow 0} \frac{\sqrt{x^{2}+9}-3}{x^{2}}$	$\begin{aligned} & \lim _{x \rightarrow 0} \frac{\sqrt{x^{2}+9}-3}{x^{2}} \cdot \frac{\sqrt{x^{2}+9}}{\sqrt{x^{2}+3}} \\ & =\lim _{x \rightarrow 0} \frac{x^{2}+9+9}{x^{2}\left(\sqrt{x^{2}+9}-3\right)} \\ & =\lim _{x \rightarrow 0} \frac{x^{2}+18}{x^{2}\left(\sqrt{x^{2}+9}-3\right)} \\ & =\lim _{x \rightarrow 0} \frac{18}{\sqrt{x^{2}+9}-3} \\ & =\infty \\ & \text { True Lie } \end{aligned}$ The sign of the conjugate is incorrect. It should be a "plus."	$\begin{aligned} & \lim _{x \rightarrow 0} \frac{\sqrt{x^{2}+9}-3}{x^{2}} \cdot \frac{\sqrt{x^{2}+9}+3}{\sqrt{x^{2}+9}+3} \\ & \quad=\lim _{x \rightarrow 0} \frac{x^{2}+9-9}{x^{2}\left(\sqrt{x^{2}+9}+3\right)} \\ & \quad=\lim _{x \rightarrow 0} \frac{1}{\sqrt{x^{2}+9}+3} \\ & \quad=\frac{1}{(12)} \end{aligned}$ True Lie When evaluating the limit, the 3 was misinterpreted as being under the square root.	$\begin{aligned} & \lim _{x \rightarrow 0} \frac{\sqrt{x^{2}+9}-3}{x^{2}} \cdot \frac{\sqrt{x^{2}+9}+3}{\sqrt{x^{2}+9}+3} \\ & =\lim _{x \rightarrow 0} \frac{x^{2}+9-9}{x^{2}\left(\sqrt{x^{2}+9}+3\right)} \\ & =\lim _{x \rightarrow 0} \frac{1}{\sqrt{x^{2}+9}+3} \\ & =\frac{1}{6} \end{aligned}$ Lie

Problem 3 $\lim _{x \rightarrow 0} \frac{\frac{1}{x+4}-\frac{1}{4}}{x}$	$\begin{aligned} & \lim _{x \rightarrow 0} \frac{\frac{4}{4} \cdot \frac{1}{x+4}-\frac{1}{4} \cdot \frac{x+4}{x+4}}{x} \\ & =\lim _{x \rightarrow 0} \frac{\frac{4}{4(x+4)}-\frac{x+4}{4(x+4)}}{x} \\ & =\lim _{x \rightarrow 0} \frac{\frac{-x+4}{4(x+4)}}{x} \\ & =\lim _{x \rightarrow 0} \frac{-x+4}{4(x+4)} \cdot \frac{1}{x} \\ & =\lim _{x \rightarrow 0} \frac{-x+4}{4(x+4)} \cdot \frac{1}{x} \\ & =\operatorname{dne} \end{aligned}$ True Lie The subtraction sign was not distributed through the numerator.	$\begin{aligned} & \lim _{x \rightarrow 0} \frac{\frac{4}{4} \cdot \frac{1}{x+4}-\frac{1}{4} \cdot \frac{x+4}{x+4}}{x} \\ & =\lim _{x \rightarrow 0} \frac{\frac{4}{4(x+4)}-\frac{x+4}{4(x+4)}}{x} \\ & =\lim _{x \rightarrow 0} \frac{\frac{-x}{4(x+4)}}{x} \\ & =\lim _{x \rightarrow 0} \frac{-x}{4(x+4)} \cdot \frac{1}{x} \\ & =\lim _{x \rightarrow 0} \frac{1}{4(x+4)} \cdot \frac{1}{1} \end{aligned}$ 8 True Lie When evaluating the limit, 4 times 4 was incorrectly calculated as 8.	$\begin{aligned} & \lim _{x \rightarrow 0} \frac{\frac{4}{4} \cdot \frac{1}{x+4}-\frac{1}{4} \cdot \frac{x+4}{x+4}}{x} \\ & =\lim _{x \rightarrow 0} \frac{\frac{4}{4(x+4)}-\frac{x+4}{4(x+4)}}{x} \\ & =\lim _{x \rightarrow 0} \frac{\frac{-x}{4(x+4)}}{x} \\ & =\lim _{x \rightarrow 0} \frac{-x}{4(x+4)} \cdot \frac{1}{x} \\ & \quad=\lim _{x \rightarrow 0} \frac{-1}{4(x+4)} \cdot \frac{1}{1} \\ & =-\frac{1}{16} \end{aligned}$ True Lie
Problem 4 $\lim _{h \rightarrow 0} \frac{(3+h)^{2}-9}{h}$	$\begin{aligned} & \lim _{h \rightarrow 0} \frac{9+6 h+h^{2}-9}{h} \\ &=\lim _{h \rightarrow 0} \frac{6 h+h^{2}}{h} \\ &=\lim _{h \rightarrow 0} \frac{h(6+h)}{h} \\ & \quad=\lim _{h \rightarrow 0}(6+h) \\ & \quad=6 \end{aligned}$ True Lie	$\begin{aligned} \lim _{h \rightarrow 0} & \frac{9+h^{2}-9}{h} \\ & =\lim _{h \rightarrow 0} \frac{h^{2}}{h} \\ & =\lim _{h \rightarrow 0} \frac{1}{h} \\ = & \text { dne } \end{aligned}$ True Lie The expansion of $(3+h)^{2}$ is incorrect as it is missing the $6 h$ term.	$\begin{aligned} \lim _{h \rightarrow 0} & \frac{9+6 h+h^{2}-9}{h} \\ & =\lim _{h \rightarrow 0} \frac{6 h+h^{2}}{h} \\ & =\lim _{h \rightarrow 0} 6 h+h \\ & =0 \end{aligned}$ True Lie The simplification of the second step is incorrect as both h terms in the numerator were not considered.

