

Avon High School AP Calculus AB Name _____

Period _____

Score ____ / 4

Two Lies and a Truth Activity: Topic 1.6

For each of the following limit problems, three solutions are provided. Two of the solutions show an incorrect answer where one solution shows a correct answer. Circle **True** if the solution is correct, or true, or circle **Lie** if the solution is incorrect, and thus a lie. For each solution this is a "lie," circle where error occurs.

Problem 1			
$\lim_{x \to 1} \frac{x^3 - 1}{x^2 + 7x - 8}$	$\lim_{x \to 1} \frac{x^3 - 1}{x^2 + 7x - 8}$ = $\lim_{x \to 1} \frac{(x - 1)(x - 1)(x - 1)}{(x - 1)(x + 8)}$ = $\lim_{x \to 1} \frac{(x - 1)^2}{x + 8}$ = $-\frac{0^2}{9}$ = 0	$\lim_{x \to 1} \frac{x^3 - 1}{x^2 + 7x - 8}$ = $\lim_{x \to 1} \frac{(x - 1)(x^2 + x + 1)}{(x - 1)(x + 8)}$ = $\lim_{x \to 1} \frac{x^2 + x + 1}{x + 8}$ = $\frac{3}{9}$ or $\frac{1}{3}$	$\lim_{x \to 1} \frac{x^3 - 1}{x^2 + 7x - 8}$ = $\lim_{x \to 1} \frac{(x - 1)(x^2 - y + 1)}{(x - 1)(x + 8)}$ = $\lim_{x \to 1} \frac{x^2 - x + 1}{x + 8}$ = $\frac{1}{9}$
	True Lie	True Lie	True Lie
	The factoring is incorrect for the difference of two cubes.		The factoring is incorrect for the difference of two cubes. The circled sign should be a "plus."
Problem 2			
$\lim_{x \to 0} \frac{\sqrt{x^2 + 9} - 3}{x^2}$	$\lim_{x \to 0} \frac{\sqrt{x^2 + 9} - 3}{x^2} \cdot \frac{\sqrt{x^2 + 9} - 3}{\sqrt{x^2 + 9} - 3}$ $= \lim_{x \to 0} \frac{x^2 + 9 + 9}{x^2 \left(\sqrt{x^2 + 9} - 3\right)}$	$\lim_{x \to 0} \frac{\sqrt{x^2 + 9} - 3}{x^2} \cdot \frac{\sqrt{x^2 + 9} + 3}{\sqrt{x^2 + 9} + 3}$ $= \lim_{x \to 0} \frac{x^2 + 9 - 9}{x^2 \left(\sqrt{x^2 + 9} + 3\right)}$	$\lim_{x \to 0} \frac{\sqrt{x^2 + 9} - 3}{x^2} \cdot \frac{\sqrt{x^2 + 9} + 3}{\sqrt{x^2 + 9} + 3}$ $= \lim_{x \to 0} \frac{x^2 + 9 - 9}{x^2 \left(\sqrt{x^2 + 9} + 3\right)}$
	$=\lim_{x\to 0}\frac{x^2+18}{x^2\left(\sqrt{x^2+9}-3\right)}$	$=\lim_{x\to 0}\frac{1}{\sqrt{x^2+9}+3}$	$=\lim_{x\to 0}\frac{1}{\sqrt{x^2+9}+3}$
	$=\lim_{x\to 0}\frac{18}{\sqrt{x^2+9}-3}$ $=\infty$	$=\frac{1}{\sqrt{12}}$	$=\frac{1}{6}$
	True Lie	True Lie	True Lie
	The sign of the conjugate is incorrect. It should be a "plus."	When evaluating the limit, the 3 was misinterpreted as being under the square root.	

Problem 3			
$\frac{1}{x+4} - \frac{1}{4}$	$\lim_{x \to 0} \frac{\frac{4}{4} \cdot \frac{1}{x+4} - \frac{1}{4} \cdot \frac{x+4}{x+4}}{x}$	$\frac{4}{4} \cdot \frac{1}{x+4} - \frac{1}{4} \cdot \frac{x+4}{x+4}$	$\frac{4}{x} \cdot \frac{1}{x+4} - \frac{1}{4} \cdot \frac{x+4}{x+4}$
$\lim_{x \to 0} \frac{x+4}{x}$		$\lim_{x \to 0} \frac{\frac{4}{x+4} + \frac{4}{4} + \frac{4}{x+4}}{x}$	$\lim_{x \to 0} \frac{\frac{4}{x+4} \cdot x + 4}{x} \cdot \frac{4}{x+4} \cdot \frac{x}{x+4}}{x}$
	$=\lim_{x \to 0} \frac{\frac{4}{4(x+4)} - \frac{x+4}{4(x+4)}}{x}$	$\frac{4}{4(x+4)} - \frac{x+4}{4(x+4)}$	$= \lim_{x \to 0} \frac{\frac{4}{4(x+4)} - \frac{x+4}{4(x+4)}}{x}$
	$=\lim_{x\to 0}\frac{x}{x}$	$= \lim_{x \to 0} \frac{f(x+1) - f(x+1)}{x}$	$=\lim_{x\to 0}\frac{(x-y)}{x}$
	$\frac{-x+4}{4(x+4)}$	$\frac{-x}{4(x+4)}$	$\frac{-x}{A(x+4)}$
	$=\lim_{x\to 0}\frac{\overline{4(x+4)}}{x}$	$= \lim_{x \to 0} \frac{\frac{-x}{4(x+4)}}{x}$	$=\lim_{x \to 0} \frac{\frac{-x}{4(x+4)}}{x}$
	$=\lim_{x\to 0}\frac{-x+4}{4(x+4)}\cdot\frac{1}{x}$	$=\lim_{x\to 0}\frac{-x}{4(x+4)}\cdot\frac{1}{x}$	$=\lim_{x\to 0}\frac{-x}{4(x+4)}\cdot\frac{1}{x}$
	$=\lim_{x\to 0}\frac{-x+4}{4(x+4)}\cdot\frac{1}{x}$	$= \lim_{x \to 0} \frac{1}{4(x+4)} \cdot \frac{1}{1}$	$= \lim_{x \to 0} \frac{-1}{4(x+4)} \cdot \frac{1}{1}$
	= dne	$\frac{1}{8}$	$=-\frac{1}{16}$
	True Lie	True Lie	True Lie
	The subtraction sign was not distributed through the numerator.	When evaluating the limit, 4 times 4 was incorrectly calculated as 8.	
Problem 4		(
$\lim_{h \to 0} \frac{\left(3+h\right)^2 - 9}{h}$	$\lim_{h \to 0} \frac{9+6h+h^2-9}{h}$	$\lim_{h\to 0} \frac{9+h^2-9}{h}$	$\lim_{h \to 0} \frac{9+6h+h^2-9}{h}$
	$=\lim_{h\to 0}\frac{6h+h^2}{h}$	$=\lim_{h\to 0}\frac{h^2}{h}$	$=\lim_{h\to 0}\frac{6h+h^2}{h}$
	$h \to 0$ h h(6 + h)	1	
	$=\lim_{h\to 0}\frac{h(6+h)}{h}$	$=\lim_{h\to 0}\frac{1}{h}$	$=\lim_{h\to 0} 6h+h$ $= 0$
	$=\lim_{h\to 0}(6+h)$	= dne	-0
	= 6		
	True Lie	True Lie	True Lie
		The expansion of $(3 + h)^2$	The simplification of the
		is incorrect as it is missing the 6 <i>h</i> term.	second step is incorrect as both <i>h</i> terms in the
			numerator were not considered.