1999 AP Calculus AB

3.	The rate at which water flows out of a pipe, in gallons per hour, is
	given by a differentiable function R of time t . The table above
	shows the rate as measured every 3 hours for a 24-hour period.

			-
(a) Use a midpoint Rieman	in sum with	4 subdivisions of equal
	length to approximate	$\int_{0}^{24} R(t) dt.$	Using correct units, explain
	the meaning of your an	swer in term	is of water flow.

(b)	Is there some time t	, 0	< t	< 24,	such	that	R'(t) = 0?	${\bf Justify}$
	your answer.							

t	R(t)
(hours)	(gallons per hour)
0	9.6
	10.4
6	10.8
6) 9	11:2
12	11.4
((11.3)
18	10.7
(c) 21	10.2
24	9.6

From time t=0 hours to t=24 hours the total water flow out of a pipe is approximately 2586 gollars

(b) Rolle's theorem guarantees a value of t on (0,24) such that R'Lt)=0

be cause (1) R(t) is differentiable on (a,b)

(2) R(t) 15 thus continuous on [a,6]