Problem #4

Water is pumped into an underground tank at a constant rate of 8 gallons per minute. Water leaks out of the tank at the rate of $\sqrt{t+1}$ gallons per minute, for $0 \le t \le 120$ minutes. At time t=0, the tank contains 30 gallons of water.

- (a) How many gallons of water leak out of the tank from time t = 0 to t = 3 minutes?
- (b) How many gallons of water are in the tank at time t = 3 minutes?
- (c) Write an expression for A(t), the total number of gallons of water in the tank at time t.
- (d) At what time t, for $0 \le t \le 120$, is the amount of water in the tank a maximum? Justify your answer.

(b)
$$\frac{t}{5} \left[8 - \sqrt{t+1} \right] dt = T(t) - T(0)$$

$$\frac{3}{5} \left[8 - \sqrt{t+1} \right] dt = T(3) - T(0)$$

$$19.333 = T(3) - 30$$

(e)
$$\int_{0}^{t} [8-Jti]\alpha t = A(t) - A(t)$$

8t - $\int_{0}^{t} [8+Idt] = A(t) - 30$
A(t) = 30 + 8t - $\int_{0}^{t} [8+Idt] dx$

(d)
$$Cv: t=63$$

 $A'(t) = A'(0) + [8-J+1]$
 $A'(t) = 30' + 8-J+1$
 $A'(t) = 8-J+1=0$
 $t+1=64$
 $t=63$

F	ALES	
038	30 193.333 103.333	#

The amount of water in the fant is at a maximum at ties minutes. The maximum water is 193.333 gallons.