2005 AP® CALCULUS AB

Problem #2

The tide removes sand from Sandy Point Beach at a rate modeled by the function R, given by

$$R(t) = 2 + 5\sin\left(\frac{4\pi t}{25}\right).$$

A pumping station adds sand to the beach at a rate modeled by the function S, given by

$$S(t) = \frac{15t}{1+3t}.$$

Both R(t) and S(t) have units of cubic yards per hour and t is measured in hours for $0 \le t \le 6$. At time t = 0, the beach contains 2500 cubic yards of sand.

- (a) How much sand will the tide remove from the beach during this 6-hour period? Indicate units of measure.
- (b) Write an expression for Y(t), the total number of cubic yards of sand on the beach at time t.
- (c) Find the rate at which the total amount of sand on the beach is changing at time t = 4.
- (d) For $0 \le t \le 6$, at what time t is the amount of sand on the beach a minimum? What is the minimum value? Justify your answers.

Justify your answers.

(a) Remark from
$$0 \le t \le c = \int_{C} [2+5 \sin(\frac{u \sigma t}{28})] dt = 31.816 \text{ yd}^3$$

(c)
$$Y'(t) = (2500)' + S(t) - R(t)$$

 $Y'(t) = S(t) - R(t)$
 $Y'(4) = -1.909 \text{ Yd}^3/\text{hr}$

t	1(t)	(1)
0	3200	
5.118	2497.369	The Sand is a minimum when t=5.118 hours
6	24 9 5 . 277	The minimum sand is 2492.369 yd3