Free Response Practice \#1 Calculator Permitted

Consider the function $h(x)=\frac{-2 x-\sin x}{x-1}$ to answer the following questions.
a. Find $\lim _{x \rightarrow 1^{+}} h(x)$. Show your numerical analysis that leads to your answer and explain what this result implies graphically about $h(x)$ at $x=1$.
b. Find $\lim _{x \rightarrow \frac{\pi}{2}}[h(x) \cdot(2 x-2)]$. Show your analysis.
c. Explain why the Intermediate Value Theorem guarantees a value of c on the interval $[1.5,2.5]$ such that $h(c)=-4$. Then, find c.

Free Response Practice \#2 Calculator NOT Permitted

Graph of $g(x)$

$$
f(x)= \begin{cases}a x+3, & x<-3 \\ x^{2}-3 x, & -3 \leq x<2 \\ b x-5, & x \geq 2\end{cases}
$$

Pictured above is the graph of a function $g(x)$ and the equation of a piece-wise defined function $f(x)$. Answer the following.
a. Find $\lim _{x \rightarrow 1^{+}}[2 g(x)-f(x) \cdot \cos \pi x]$. Show your work applying the properties of limits.
b. On its domain, what is one value of x at which $g(x)$ is discontinuous? Use the three part definition of continuity to explain why $g(x)$ is discontinuous at this value.
c. For what value(s) of a and b, if they exist, would the function $f(x)$ be continuous everywhere? Justify your answer using limits.

