A $f(x)=\frac{x^{2}-2 x-3}{x+1}$	$f(x)=\left\{\begin{array}{cc} 2 x-1, & x<0 \\ x^{2}+x-1, & x>0 \\ 2, & x=0 \end{array}\right.$
C $f(x)=\frac{\|x+1\|}{x+1}$	D $f(x)=\frac{x^{2}-x-2}{x^{2}+2 x+1}$
$f(x)=\left\{\begin{array}{cl} \frac{\sin x}{x} & x \neq 0 \\ 1 & x=0 \end{array}\right.$	$f(x)=\left\{\begin{array}{cc} e^{x} & x<0 \\ \ln \|x+1\| & x>0 \end{array}\right.$
G $f(x)=\frac{x^{2}+2 x-8}{x-2}$	H $f(x)=\frac{x^{2}-x-2}{x^{2}-4 x+4}$
$f(x)=\left\{\begin{array}{cc} x^{2} & x<2 \\ x & x \geq 2 \end{array}\right.$	

$\lim _{x \rightarrow-1} f(x)=-4$	$\begin{gathered} 1 \\ \lim _{x \rightarrow 0} f(x)=-1 \end{gathered}$ $f(x)$ is not continuous at $x=0$
4 $\lim _{x \rightarrow-1^{-}} f(x)$ exists $\lim _{x \rightarrow-1} f(x)$ does not exist	2 The limit of $f(x)$ as x approaches -1 does not exist due to unbounded behavior.
9 $f(x)$ is continuous at $x=0$	5 $\lim _{x \rightarrow 0} f(x)$ does not exist
7 $f(x)$ has a removable discontinuity at $x=2$	8 $f(x)$ has a vertical asymptote at $x=2$
6 $f(2)$ is defined	

