Using the graph of Mario's velocity, answer the following questions.
a. What is Mario's position at 5 seconds? Interpret this result.

$$
\text { Net Distance }=\int_{0}^{5} v(t) d t=5(-4.086)=-20.43 \text { blocks }
$$

At 5 second, Mario is 20.43 blocks left of his starting position.
b. What is Mario's acceleration at 5 seconds? Interpret this result.

$$
a(5)=v^{\prime}(5)=0 \mathrm{ft} / \sec ^{2}
$$

At 5 seconds, Mario's acceleration is $0 \mathrm{ft} / \mathrm{sec}^{2}$
c. What is Mario's net distance traveled from 0 seconds to 13 seconds? Interpret this result.

$$
\begin{aligned}
\text { Net Distance }=\int_{6}^{13} v(t) d t & =6(-4.086)+\frac{1}{2}\left(\frac{1}{2}\right)(-4.086)+\frac{1}{2}\left(\frac{1}{2}\right)(4.086)+6(4.086) \\
& =0 \text { blocks }
\end{aligned}
$$

At 13 seconds, Mario has traveled a net distance of \mathcal{O} blocks.
d. What is Mario's total distance traveled from 0 seconds to 13 seconds? Interpret this result.

$$
\begin{aligned}
\text { Net Distance }=\int_{s}^{13}|v(t)| d t & =|6(-4.086)|+\left|\frac{1}{2}\left(\frac{1}{2}\right)(-4.086)\right|+\left|\frac{1}{2}\left(\frac{1}{2}\right)(4.086)\right|+|6(4.086)| \\
& =|-24.516|+|-1.0215|+|1.0215|+|24.516| \\
& =24.516+1.0215+1.0215+24.516
\end{aligned}
$$

At 13 seconds, Mario has traveled a net distance of 51.075 blocks.
e. What is Mario's net distance traveled from 0 to 23 seconds? Interpret this result.

$$
\begin{aligned}
\text { Net desfence }=\int_{0}^{23} v(t) d t & =\int_{0}^{13} v(t) d t+\int_{13}^{01} v(t) d t+\int_{17}^{18} v(t) d t+\int_{18}^{23} v(t) d t \\
& =0+4(4.086)+0+5(-4.086) \\
& =-4.086 \text { blocks. }
\end{aligned}
$$

At 23 seconds, Mario's position is 4.086 blocks left of has starting pion.
\qquad
f. Approximate Mario's net distance traveled from 24 to 28 seconds using 2 left hand rectangles. Interpret this result.

Net Distance $=\int_{\partial y}^{\partial 8} v(t) d t$

$$
\begin{aligned}
& \approx 2(30.629)+2(40) \\
& \approx 41.258+80 \\
& \approx 141.258
\end{aligned}
$$

Mario's vet distance traveled from 24 to 28 seconds is about 141.258 blocks right.
g. Find $\int_{24}^{28} a(t) d t$. Include proper units.

$$
\begin{aligned}
\int_{24}^{28} a(t) d t & =\left.v(t)\right|_{\partial 4} ^{28} \\
& =v(28)-v(24) \\
& \approx 47-30.629 \\
& \approx 17.629 \text { blocks } / \text { sec od. } .
\end{aligned}
$$

h. On http://smacmathapcalculus.weebly.com/mario-particle-motion.html there are 5 Mario clips. Reassess the matches you made previously in part a. If you make any changes, write them beside "Clip \#" on part a, and state what changes you made and why you made those changes below. For every clip you get correct, you get 4 points. For every clip you get incorrect you lose 4 points. For every clip you choose not to match, you lose 1 point. If you choose not to match any clip, give a reason below.
i. Retrieve your pictures from the board and arrange them in the proper order. Once finished, paper clip your group's papers together and put them into the tray.

