4.2 - Straight-Line Motion: Connecting Position, Velocity and Acceleration Projectiles

A particle is moving along a horizontal line with position function as given. Perform an analysis of the particle's direction, acceleration, motion (speeding up or slowing down), and position by completing the given number lines.

1.) $s(t)=-t^{3}+9 t^{2}-24 t+1$

$$
v(t)=-3 t^{2}+18 t-24
$$

$v(t)=0$

$$
0=-3\left(t^{2}-6 t-8\right)
$$

$$
0=-3(t-4)(t-2)
$$

$$
\begin{gathered}
a(t)=-6 t+18 \\
a(t)=0 \quad 0=-6(t-3) \\
t=3
\end{gathered}
$$

$$
t=4, t=2
$$

t	$s(t)$
0	1
1	-15
2	-19
3	-17
4	-15
5	-19

\qquad
2.) $s(t)=t+\frac{9}{t+1}=t+a(t+1)^{-1}$

t	$s(t)$
0	10
1	6.5
2	6
3	6.25
4	6.8
5	7.5

$$
\begin{aligned}
& v(t)=\frac{(t+1)^{2}-9}{(t+1)^{2}} \\
& v(t)=\frac{t^{2}+2 t+1-9}{(t+1)^{2}} \\
& v(t)=\frac{t^{2}+2 t-8}{(t+1)^{2}}
\end{aligned}
$$

$$
t=3 \quad t=4 \quad t=5
$$

$$
\begin{aligned}
& a(t)=\frac{(2 t+2)(t+1)^{2}-\left(t^{2}+2 t-8\right) 2(t+1)}{\left((t+1)^{2}\right)^{2}} \\
& a(t)=\frac{(2 t+2)\left[t^{2}+2 t+1-t^{2}-2 t+8\right]}{(t+1)^{4}} \\
& a(t)=\frac{18(t+1)}{(t+1)^{4}}
\end{aligned}
$$

Not in Domain
3.) A dynamite blast propels a heavy rock straight up with a launch velocity of $160 \mathrm{ft} / \mathrm{sec}$ (about 109 $\mathrm{mph})$. The rock reaches a height $s(\mathrm{t})=160 \mathrm{t}-16 \mathrm{t}^{2}$ feet after t seconds.
a.) How high does the rock go?

0

FIND MAximum \therefore find when $v(t)=0$

$$
\begin{aligned}
& v(t)=160-32 t \\
& \frac{v(t)}{}=0 \\
& \therefore v(t)=160(5-t) \\
& s(5)=400 f=5
\end{aligned}
$$

The maximum height of the rock is 400 feet.
c.) What is the acceleration of the rock at any time t during its flight (after the blast)?

$$
a(t)=-32 \mathrm{ft} / \sec ^{2}
$$

acceleration due to Earth's gravity

4.) A projectile is fired vertically upward with an initial velocity of $96 \mathrm{ft} / \mathrm{sec}$ from a tower 256 ft high.

Therefore, $s(t)=-16 t^{2}+96 t+256$.
a.) How long will it take for the projectile to reach its maximum height?

FIND MAximum \therefore find when $v(t)=0$

$$
\begin{aligned}
v(t) & =-32 t+96 \\
0 & =-32(t-3) \\
v(t) & =0 \text { \& } t=3
\end{aligned}
$$

It will take 3 seconds to reach its maximum.
c.) How long will it take the projectile to reach its starting position on its way down?

$$
\begin{gathered}
0 \\
s(t)=256 \\
256=-16 t^{2}+96 t+256 \\
0=-16 t(t-6) \\
s(t)=0 \text { © } t=0, t=6 \\
\text { Firsitur second } \\
\text { time time }
\end{gathered}
$$

It will take 6 seconds to reach its starting height of 256 feet.
e.) How long will it take for the projectile to hit the ground?

$$
\begin{aligned}
& S(t)=0 \\
& 0=-16 t^{2}+96 t+256 \\
& 0=-16\left(t^{2}-6 t-16\right) \\
& 0=-16(t-8)(t+2) \\
& s(t)=0 @ t=-2, t=8 \\
& \text { befog } \\
& \text { its fired? }
\end{aligned}
$$

It will take 8 seconds to hit the ground.

$$
\begin{aligned}
& S(3)=-16(3)^{2}+96(3)+256 \\
& S(3)=400
\end{aligned}
$$

The max height is too ft.
d.) What is the velocity of the projectile when it passes its starting point on the way down?

$$
\begin{aligned}
& v(6)=-32(6-3) \\
& v(6)=-96 \mathrm{ft} / \mathrm{sec}
\end{aligned}
$$

velocity is -96 $\mathrm{ft} / \mathrm{sec}$ when it pusses its starting point.
f.) What will the speed of the projectile be when it hits the ground?

Speed is $160 \mathrm{ft} / \mathrm{sec}$
5.) Uncle Si's four-wheeler runs out of gas as it goes up a hill. The vehicle rolls to a stop then starts rolling backwards. As it rolls, its displacement $d(t)$ in feet from the bottom of the hill at t seconds since the vehicle ran out of gas is given by $d(t)=145+31 t-t^{2}$.

a.) How far from the bottom of the hill was Uncle Si 0° when he ran out of gas?

$$
d(0)=145 \text { feet }
$$

Uncle si is 145 feet from bottom of hill when he ran out of gross
c.) How far was the four-wheeler from the bottom of the hill when it starts to roll backwards?

$$
\begin{aligned}
& d(15.5)=145+31(15.5)-(15.5)^{2} \\
& d(15.5)=385.25
\end{aligned}
$$

Hewas 385.25 feet from bottom of hill.
b.) When is his velocity positive? What does this mean in the context of the problem?

$$
\begin{aligned}
v(t) & =31-\partial t \\
0 & =2(15.5-t)
\end{aligned}
$$

$$
v(t)=0 @ t=15.5
$$

His velocity is positive from $t=0$ to $t=15.5$ seconds. Phis is him coasting op hill after running out of gas
d.) If Si keeps his foot off the brake, how long will it take for him to be at the bottom of the hill? $\rightarrow d(t)=0$ What will his speed be at that time?

$$
0=145+31 t-t^{2}
$$

cal

$$
\begin{aligned}
& \frac{A L}{t \approx 35.128}, t=-4.128 \\
& v(35.128) \approx 31-2(31.128) \\
& v(35.128) \approx-39.256 \\
& \text { speed }=|-39.256|
\end{aligned}
$$

If will take him 35.128 seconds to coast to bottom of hill with a speed of $39.256 \mathrm{ft} / \mathrm{sec}$
\qquad
6.) The velocity $v(t)$ of a particle moving along the x-axis is shown in the figure to the right with t measured in seconds. Later in this course, you will learn ways to justify each response as well as finding how far the particle traveled.

a.) At what time t is the particle farthest to the right?

$$
t=3
$$

b.) At what time intervals is the particle speeding up?

$$
v(t)<0 \text { and } a(t)<0 \text { on interval }(3,7)
$$ \therefore particle speeds up there.

