\qquad

4.2 - Straight-Line Motion: Connecting Position, Velocity and Acceleration Two Truths \& A Lie

Is Straight Line Motion bugging you?

Five different bugs are moving along the x axis. The graphs of their velocities are given below on various time intervals. There are three statements below each velocity graph. Two of these statements are true while one statement is false.

For each velocity graph:

1. Identify which of the three statements is false.
2. Explain why the statement is false and/or correct the statement.

Bug \#1-Herman

Statement 1: $a(4)=0$ True
Statement 2: $a(11)<0$ True
Statement 3: $a(13)<0$ fa l $\quad a(13)>0 \quad b / c \quad(t)$ is increasing there

Particle 2 - Brutus

Statement 1: The particle changes directions at $t=4 \quad$ True
Statement 2: The particle changes directions at $t=6 \quad$ F $\boldsymbol{\alpha}$ Se
Statement 3: The particle is moving left at $t=2$ True
$v(t) \neq 0$ and doesnit change signs at $t=6$
\qquad

Bug \#3 - Landon

True
Statement 1: The particle is slowing down at $t=4 \quad v(t)>0, a(t)<0$
Statement 2: The particle is slowing down at $t=6 \quad v(t)<0, a(t)<0 \therefore$ particle speeds up
Statement 3: The particle is slowing down at $=8 \quad w(t)<0, a(t)>0$

Bug \#4 - Hershel

Statement 1: The particle is moving to the left on the interval $(0,3)$ False
particle moves right
when $v(t)>0$ which happens on 0 to about 1.5

Statement 2: The particle is moving to the right on the interval $(6,7)$ True
Statement 3: The particle is moving to the left on the interval $(2,3)$ True

Bug \#5 - Maude

Statement 1: The particle is moving to the left when $a(t)=1$ True $(v(t)<0)$
Statement 2: The particle changes direction only once. True at $t=3$
Statement 3: The acceleration of the particle is 0 when $t=3$. False, $a(t)=-1$

$$
\text { (The velocity is } 0 \text { a he } t=3 \text {) }
$$

