Skill Builder: Topics 2.4 - Differentiability

1.) For the following, state whether the function is continuous, differentiable, both or neither at $\boldsymbol{x}=\boldsymbol{c}$.

 Continuous and not differentiable.	 Not continuous and not differentiable.	 Not continuous and not differentiable.	 Continuous and differentiable.
 Not continuous and not differentiable.	 Not continuous and not differentiable.	 Not continuous and not differentiable.	 Continuous and differentiable.

2.) Sketch a function having the following attributes, if possible.

a.) differentiable and continuous at the point $(2,4)$	b.) continuous, but not differentiable at $(-3,1)$	c.) cusp at the point $(-1,3)$	d.) differentiable, but not continuous at $(2,-4)$ not possible. Differentiable then continuous.
		\because	
		\square	π
		,	-
	'	\cdots	
-	+1. ${ }_{\text {+ }}$	+1.1 +	

Skill Builder: Topics 2.4 - Differentiability

3.) For each function, $f(x)$, determine if the function is continuous or non-continuous, differentiable or non-differentiable, and sketch the curve.

continuous
$\lim _{x \rightarrow 0} f^{\prime}(x)=1 \quad \lim _{x \rightarrow 0^{+}} f^{\prime}(x)=2(0)=0 f^{\prime}(0)=0$
not differentiable
continuous differentiable both neither
continuous differentiable both neither
$\lim _{x \rightarrow 1} f(x)=3 \quad \lim _{x \rightarrow 1^{+}} f(x)=4$
not continuous \Rightarrow not differentiable
c.) $f(x)= \begin{cases}\cos x, & x \geq 0 \\ 1 & x^{2}, x<0\end{cases}$

Note: Exercise caution when graphing $f(x)=\cos x$ using the provided coordinate axes.

$$
\lim _{x \rightarrow 0} f(x)=1 \quad \lim _{x \rightarrow 0^{+}} f(x)=1 \quad f(0)=1
$$

continuous

$$
\begin{array}{ll}
\lim _{x \rightarrow 0} f^{\prime}(x)=2(0)=0 & \lim _{x \rightarrow 0^{+}} f^{\prime}(x)=\sin (0)=0 \\
f^{\prime}(0)=\sin (0)=0 & \text { differentiable }
\end{array}
$$

