Topic 5.3 - Determining an Interval on Which a Function is Increasing or Decreasing Topic 5.4 - Using the First Derivative Test to Determine Relative (Local) Extrema
Find the intervals where the function is increasing or decreasing. Use a sign chart to organize your analysis.


Find all critical numbers and use the First Derivative Test to find the points that are a relative maximum or a relative minimum. You may use a chart or a number line to perform your sign tests.

9.) $y=\frac{x^{2}}{4}-\ln x$ Domain is $0<x<\infty$

| $f^{\prime}(x)=\frac{1}{2} x-\frac{1}{x}=\frac{x^{2}-2}{2 x}$ |  |
| :--- | :--- |
| $\frac{f^{\prime}(x)=0}{x^{2}-2=0}$ |  |
| $x=-\sqrt{2}, \sqrt{2} \quad$ | $\frac{f^{\prime}(x) \text { is und }}{2 x=0}$ |
| $x=0($ not in domain of $f(x))$ |  |


$f(x)$ has a relative minimum at $\left(\sqrt{2}, \frac{1}{2}-\ln \sqrt{2}\right)$
because the sign of $f^{\prime}(x)$ changes from negative to positive at $x=\sqrt{2}$.
11.) $y=2 x^{2} \ln x$ Domain is $0<x<\infty$
$f^{\prime}(x)=4 x \cdot \ln x+2 x^{2} \cdot \frac{1}{x}=4 x \cdot \ln x+2 x$
$\frac{f^{\prime}(x)=0}{4 x \cdot \ln x+2 x=0} \quad \frac{f^{\prime}(x) \text { is und }}{x \leq 0}$
$2 x(2 \ln x+1)=0$
$2 x=0 \quad 2 \ln x+1=0$
$x=0 \quad \ln x=-\frac{1}{2}$

$$
x=e^{-1 / 2}
$$



$f(x)$ has a relative minimum at $\left(e^{-1 / 2},-e\right)$ because the sign of $f^{\prime}(x)$ changes from negative to positive at $x=e^{-1 / 2}$.

Note: $\mathrm{e}^{-1 / 2}$ is approximately 0.6 . This is likely not common knowledge and you shouldn't worry too much if you did not know it. As far as selecting a test value between 0 and $\mathrm{e}^{-1 / 2}, \mathrm{e}^{-1}$ would work rather easily.
10.) $y=\ln x-x$ Domain is $0<x<\infty$
$f^{\prime}(x)=\frac{1}{x}-1=\frac{1-x}{x}$
$\underline{f^{\prime}(x)=0 \quad \underline{f^{\prime}(x) \text { is und }}}$
$1-x=0 \quad x=0($ not in domain of $f(x))$
$x=1$

$f(x)$ has a relative maximum at $(1,-1)$ because the sign of $f^{\prime}(x)$ changes from positive to negative at $x=1$.
12.) $y=\frac{\ln x}{2 x} \quad$ Domain is $0<x<\infty$
$f^{\prime}(x)=\frac{\frac{1}{x} \cdot 2 x-\ln x \cdot 2}{4 x^{2}} \cdot \frac{x}{x}=\frac{2 x-2 x \ln x}{4 x^{3}}$
$\frac{f^{\prime}(x)=0}{2 x-2 x \ln x=0} \quad \frac{f^{\prime}(x) \text { is und }}{4 x^{3}=0}$
$2 x(1-\ln x)=0 \quad x=0($ not in domain of $f(x))$
$2 x=0 \quad \ln x=1$
$x=0 \quad x=e$

$f(x)$ has a relative maximum at $\left(e, \frac{1}{2 e}\right)$ because the sign of $f^{\prime}(x)$ changes from positive to negative at $x=e$.

13.) $y=2 x e^{-x}$
$f^{\prime}(x)=2 \cdot e^{-x}+2 x \cdot\left(-e^{-x}\right)=2 e^{-x}(1-x)$
$\frac{f^{\prime}(x)=0}{2 e^{-x}(1-x)}=0$
$\frac{f^{\prime}(x) \text { is und }}{\varnothing}$
$2 e^{-x}=0 \quad 1-x=0$
$\varnothing \quad x=1$

$f(x)$ has a relative maximum at $\left(1, \frac{2}{e}\right)$ because the sign of $f^{\prime}(x)$ changes from positive to negative at $x=1$.
14.) $y=x^{2} e^{-x}$
$f^{\prime}(x)=2 x \cdot e^{-x}+x^{2} \cdot\left(-e^{-x}\right)=2 x e^{-x}-x^{2} e^{-x}$
$\frac{f^{\prime}(x)=0}{2 x e^{-x}-x^{2} e^{-x}=0 \quad \frac{f^{\prime}(x) \text { is und }}{\varnothing}}$
$x e^{-x}(2-x)=0$
$\begin{array}{cccc}x=0 & e^{-x}=0 & 2-x=0 \\ x=0 & \varnothing & x=2\end{array}$


$f(x)$ has a relative minimum at $(0,0)$ because the sign of $f^{\prime}(x)$ changes from negative to positive at $x=0$.
$f(x)$ has a relative maximum at $\left(2, \frac{4}{e^{2}}\right)$ because the sign of $f^{\prime}(x)$ changes from positive to negative at $x=2$.

