
Topic 5.3 – Determining an Interval on Which a Function is Increasing or Decreasing                          

                       Topic 5.4 – Using the First Derivative Test to Determine Relative (Local) Extrema                                                    
Find the intervals where the function is increasing or decreasing.  Use a sign chart to organize your analysis. 
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f (x) is increasing on  , 1   and  1,  because 

( ) 0f x   on those intervals. 

f (x) is decreasing on  1,1  because ( ) 0f x   on that 

interval. 
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f (x) is decreasing on  , 2   and  0,2  because 

( ) 0f x   on those intervals. 

f (x) is increasing on  2,0 and  2,   because 

( ) 0f x   on those intervals. 
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f (x) is decreasing on  , 1   because ( ) 0f x   on that 

interval. 

f (x) is increasing on  1,   because ( ) 0f x   on that 

interval. 
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f (x) is increasing on 0,
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Find all critical numbers and use the First Derivative Test to find the points that are a relative maximum or a 

relative minimum.  You may use a chart or a number line to perform your sign tests. 
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f (x) has a relative minimum at  3, 29   because the 

sign of ( )f x  changes from negative to positive at 

3x   . 
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f (x) has a relative 

maximum at  2,2  

because the sign of ( )f x  

changes from positive to 

negative at 2x  . 

 

f (x) has a relative minimum at 

 0,0  because the sign of ( )f x  

changes from neg to pos at 0x  . 
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because the sign of ( )f x  changes from negative to 

positive at 2x  . 
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f (x) has a relative maximum at  1, 1  because the 

sign of ( )f x  changes from positive to negative at 

1x  . 
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f (x) has a relative minimum at  1/2 ,e e   because the 

sign of ( )f x  changes from negative to positive at 
1/2x e . 

 
Note:  e-1/2 is approximately 0.6.  This is likely not common knowledge 
and you shouldn’t worry too much if you did not know it.  As far as 
selecting a test value between 0 and e-1/2, e-1 would work rather easily. 
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f (x) has a relative minimum at  0,0  because the 

sign of ( )f x  changes from negative to positive at 
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