## Topic 5.3 – Determining an Interval on Which a Function is Increasing or Decreasing Topic 5.4 – Using the First Derivative Test to Determine Relative (Local) Extrema

Find the intervals where the function is increasing or decreasing. Use a sign chart to organize your analysis.

| <b>1.</b> ) $f(x) = x^3 - 3x + 2$                                                                                                                                          | <b>2.</b> ) $f(x) = x^4 - 8x^2 + 1$                                                                                                                                                         |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| $f'(x) = 3x^2 - 3$                                                                                                                                                         | $f'(x) = 4x^3 - 16x$                                                                                                                                                                        |
| f'(x) = 0 $f'(x)$ is und                                                                                                                                                   | f'(x) = 0 $f'(x)$ is und                                                                                                                                                                    |
| $3x^2 - 3 = 0 \qquad \varnothing$                                                                                                                                          | $4x^3 - 16x = 0 \qquad \varnothing$                                                                                                                                                         |
| $3(x^2-1)=0$                                                                                                                                                               | $4x(x^2-4)=0$                                                                                                                                                                               |
| x = -1, 1                                                                                                                                                                  | x = -2, 0, 2                                                                                                                                                                                |
|                                                                                                                                                                            |                                                                                                                                                                                             |
| Sign of<br>f'(x) + + + + + + + + + + + + + + + + + + +                                                                                                                     | Sign of<br>f'(x) 0 + + + 0 0 + + + + + + +                                                                                                                                                  |
| $f(x)$ is increasing on $(-\infty, -1]$ and $[1, \infty)$ because $f'(x) > 0$ on those intervals.<br>f(x) is decreasing on $[-1, 1]$ because $f'(x) < 0$ on that interval. | $f(x)$ is decreasing on $(-\infty, -2]$ and $[0, 2]$ because $f'(x) < 0$ on those intervals.<br>$f(x)$ is increasing on $[-2, 0]$ and $[2, \infty)$ because $f'(x) > 0$ on those intervals. |
|                                                                                                                                                                            | (0,2-)                                                                                                                                                                                      |
| 3.) $f(x) = (x+1)^{2}$                                                                                                                                                     | 4.) $f(x) = \sin x + \cos x$ on $(0, 2\pi)$                                                                                                                                                 |
| $f'(x) = \frac{2}{3}(x+1)^{-1/3} = \frac{2}{2^{3}(x+1)}$                                                                                                                   | $f'(x) = \cos x - \sin x$<br>$f'(x) = 0 \qquad f'(x) \text{ is und}$                                                                                                                        |
| $f'(x) = 0 \qquad f'(x) \text{ is und}$                                                                                                                                    | $\frac{f(x) - g}{\cos x - \sin x} = 0 \qquad \varnothing$                                                                                                                                   |
| $a$ $\frac{3\sqrt[3]{x+1}}{3\sqrt[3]{x+1}} = 0$                                                                                                                            | $\cos x = \sin x$                                                                                                                                                                           |
| x + 1 = 0                                                                                                                                                                  | $x = \frac{\pi}{2}, \frac{5\pi}{2}$                                                                                                                                                         |
| x = -1                                                                                                                                                                     | 4 4                                                                                                                                                                                         |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                       | Sign of $++0$ 0 + + + + + + + + + + + + + +                                                                                                                                                 |
| $f(x)$ is decreasing on $(-\infty, -1]$ because $f'(x) < 0$ on that                                                                                                        | $f(x)$ is increasing on $\left[0, \frac{\pi}{4}\right]$ and $\left[\frac{5\pi}{4}, 2\pi\right]$ because                                                                                     |
| interval.                                                                                                                                                                  | f'(x) > 0 on those intervals.                                                                                                                                                               |
| $f(x)$ is increasing on $[-1,\infty)$ because $f'(x) > 0$ on that                                                                                                          | $f(x)$ is increasing on $\begin{bmatrix} \pi & 5\pi \end{bmatrix}$ because $f'(x) < 0$ or                                                                                                   |
| interval.                                                                                                                                                                  | $\int (x)$ is increasing on $\lfloor \frac{1}{4}, \frac{1}{4} \rfloor$ because $\int (x) < 0$ on                                                                                            |
|                                                                                                                                                                            | that interval.                                                                                                                                                                              |
|                                                                                                                                                                            |                                                                                                                                                                                             |
|                                                                                                                                                                            |                                                                                                                                                                                             |
|                                                                                                                                                                            |                                                                                                                                                                                             |

Find all critical numbers and use the First Derivative Test to find the points that are a relative maximum or a relative minimum. You may use a chart or a number line to perform your sign tests.





