Topic 5.5 – Using the Candidates Test to Determine Absolute (Global) Extrema

Find the absolute (global) maximum and absolute (global) minimum of the given function over the provided interval.

1.)
$$f(x) = 4x^2 - 4x + 1$$
 [0,2]
 $f'(x) = 8x - 4$
 $\frac{f'(x) = 0}{8x - 4 = 0}$ $\frac{f'(x) \text{ is undefined}}{\emptyset}$
 $x = \frac{1}{2}$
Candidates: $0, \frac{1}{2}, \text{ and } 2$
 $\frac{x}{12}$
 $\frac{x}{12}$
 $\frac{x}{12}$
 $\frac{f(x)}{2} - 4(\frac{1}{2})^2 - 4(\frac{1}{2}) + 1 = 0}{2}$
The absolute maximum is 9 which occurs
when $x = 2$.
The absolute minimum is 0 which occurs
when $x = \frac{1}{2}$.
The absolute minimum is 0 which occurs
when $x = \frac{1}{2}$.
The absolute minimum is 0 which occurs
when $x = \frac{1}{2}$.
The absolute minimum is -43 which occurs
when $x = 2$.

3

6 - |6 - 4(3)| = 0

The absolute minimum is 0 which occurs when x = 0 and x = 20.

The absolute minimum is -12 which occurs when x = -3.

In the following problems, the range of the periodic function f(x) is the interval [a,b] while the domain is $[0,2\pi]$. Find b-a.

12.) $f(x) = \cos x - \sin^2 x$ $f'(x) = -\sin x - 2\sin x \cdot \cos x$ f'(x) = 0f'(x) is undefined $-\sin x - 2\sin x \cdot \cos x = 0$ Ø $-\sin x(1+2\cos x)=0$ $-\sin x = 0$ $1 + 2\cos x = 0$ $\cos x = -\frac{1}{2}$ $x = 0, \pi, 2\pi$ $x = \frac{2\pi}{3}, \frac{4\pi}{3}$ Candidates: $0, \frac{2\pi}{3}, \pi, \frac{4\pi}{3}$, and 2π f(x) $\cos(0) - \sin^2(0) = 1$ $\frac{5}{4}$ $\cos\left(\frac{2\pi}{3}\right) - \sin^2\left(\frac{2\pi}{3}\right) = -\frac{1}{2} - \left(\frac{\sqrt{3}}{2}\right)$ $\cos(\pi) - \sin^2(\pi) = -1$ $\cos\left(\frac{4\pi}{3}\right) - \sin^2\left(\frac{4\pi}{3}\right) = -\frac{1}{2} - \left(\frac{\sqrt{3}}{2}\right)$ $\frac{5}{4}$ $\cos(2\pi) - \sin^2(2\pi) = 1$ 2•π 4-π

The difference between the maximum and the minimum is $1 - \left(-\frac{5}{4}\right) = \frac{9}{4}$.

13.) Determine whether each labeled point is an absolute maximum or minimum, a relative maximum or minimum or neither.

15.) A particle moves along the x-axis such that its position
is
$$x(t) = 0.25^{t} - 2.916^{t} + 12.25^{t} - 22t + 21.6$$
 for $1 \le t \le 4$.
A graph of its velocity is shown to the right. At what time does
it reaches its leftmost position? Where is the particle when
it reaches its leftmost position?

$$\frac{d}{d}(0.5^{t}, \frac{1}{2.916}, \frac{1}{2.125}, \frac{1}{2.22}, \frac{1}{2.22}, \frac{1}{2.16}, \frac{1}{1.9475}, \frac{1}{3}, \frac{3}{48}, \frac{1}{2}, \frac{1}{45}, \frac{1}{2}, \frac{1}{2},$$