Topic 5.5 - Using the Candidates Test to Determine Absolute (Global) Extrema

Find the absolute (global) maximum and absolute (global) minimum of the given function over the provided interval.
1.) $f(x)=4 x^{2}-4 x+1 \quad[0,2]$
$f^{\prime}(x)=8 x-4$
$\frac{f^{\prime}(x)=0}{8 x-4=0} \quad \frac{f^{\prime}(x) \text { is undefined }}{\varnothing}$
$x=\frac{1}{2}$
Candidates: $0, \frac{1}{2}$, and 2

\boldsymbol{x}	$\boldsymbol{f}(\boldsymbol{x})$
0	$4(0)^{2}-4(0)+1=1$
$\frac{1}{2}$	$4\left(\frac{1}{2}\right)^{2}-4\left(\frac{1}{2}\right)+1=0$
2	$4(2)^{2}-4(2)+1=9$

The absolute maximum is 9 which occurs when $x=2$.

The absolute minimum is 0 which occurs when $x=\frac{1}{2}$.
2.) $f(x)=6 x^{3}-6 x^{4}+5 \quad[-1,2]$
$f^{\prime}(x)=18 x^{2}-24 x^{3}$
$\frac{f^{\prime}(x)=0}{18 x^{2}-24 x^{3}=0} \quad \frac{f^{\prime}(x) \text { is undefined }}{\varnothing}$
$6 x^{2}(3-4 x)=0$
$x=0, \frac{3}{4}$
Candidates: $-1,0, \frac{3}{4}$, and 2

\boldsymbol{x}	$\boldsymbol{f}(\boldsymbol{x})$
-1	$6(-1)^{3}-6(-1)^{4}+5=-7$
0	$6(0)^{3}-6(0)^{4}+5=5$
$\frac{3}{4}$	$6\left(\frac{3}{4}\right)^{3}-6\left(\frac{3}{4}\right)^{4}+5=\frac{721}{128}$
2	$6(2)^{3}-6(2)^{4}+5=-43$

The absolute maximum is $\frac{721}{128}$ which occurs when $x=\frac{3}{4}$.
The absolute minimum is -43 which occurs when $x=2$.
3.) $f(x)=\frac{x}{x^{2}+1}[-1,4]$
$f^{\prime}(x)=\frac{1\left(x^{2}+1\right)-x(2 x)}{\left(x^{2}+1\right)^{2}}=\frac{-x^{2}+1}{\left(x^{2}+1\right)^{2}}$
$\begin{array}{lc}\frac{f^{\prime}(x)=0}{-x^{2}+1=0} & \frac{f^{\prime}(x) \text { is undefined }}{\left(x^{2}+1\right)^{2}=0} \\ x=-1,1 & \varnothing\end{array}$
Candidates: $-1,1$, and 4

\boldsymbol{x}	$\boldsymbol{f}(\boldsymbol{x})$
-1	$\frac{(-1)}{(-1)^{2}+1}=-\frac{1}{2}$
1	$\frac{1}{1^{2}+1}=\frac{1}{2}$
4	$\frac{4}{(4)^{2}+1}=-\frac{4}{17}$

The absolute maximum is $\frac{1}{2}$ which occurs when $x=1$.
The absolute minimum is $-\frac{1}{2}$ which occurs when $x=-1$.
4.) $f(x)=\left(x^{2}-1\right)^{\frac{2}{3}}[-2,3]$
$f^{\prime}(x)=\frac{2}{3}\left(x^{2}-1\right)^{-1 / 3}(2 x)=\frac{4 x}{3 \sqrt[3]{x^{2}-1}}$
$\begin{array}{lc}\frac{f^{\prime}(x)=0}{4 x=0} & \frac{f^{\prime}(x) \text { is undefined }}{3 \sqrt[3]{x^{2}-1}=0} \\ x=0 & x=-1,1\end{array}$
Candidates: $-1,0$, and 1

\boldsymbol{x}	$\boldsymbol{f}(\boldsymbol{x})$
-2	$\left((-2)^{2}-1\right)^{\frac{2}{3}}=\sqrt[3]{9}$
-1	$\left((-1)^{2}-1\right)^{\frac{2}{3}}=0$
0	$\left((0)^{2}-1\right)^{\frac{2}{3}}=1$
1	$\left((1)^{2}-1\right)^{\frac{2}{3}}=0$
3	$\left((3)^{2}-1\right)^{\frac{2}{3}}=4$

The absolute maximum is 4 which occurs when $x=3$.
The absolute minimum is 0 which occurs when $x=-1$ and $x=1$.
5.) $f(x)=x^{2 / 3}(20-x) \quad[-1,20]$
$f(x)=20 x^{2 / 3}-x^{5 / 3}$
$f^{\prime}(x)=\frac{40}{3} x^{-1 / 3}-\frac{5}{3} x^{2 / 3}=\frac{5}{3} x^{-1 / 3}(8-x)=\frac{5(8-x)}{3 \sqrt[3]{x}}$

$\frac{f^{\prime}(x)=0}{5(8-x)=0}$	$\frac{f^{\prime}(x) \text { is undefined }}{3 \sqrt[3]{x}}=0$
$x=8$	$x=0$

Candidates: $-1,0,8$, and 20

\boldsymbol{x}	$\boldsymbol{f}(\boldsymbol{x})$
-1	$(-1)^{2 / 3}(20-(-1))=21$
0	$(0)^{2 / 3}(20-(0))=0$
8	$(8)^{2 / 3}(20-(8))=48$
20	$(20)^{2 / 3}(20-(20))=0$

$\underline{f^{\prime}(x)=0}$
$\underline{f^{\prime}(x) \text { is undefined }}$

$$
x=\frac{3}{2}
$$

Candidates: $-3, \frac{3}{2}$, and 3

\boldsymbol{x}	$\boldsymbol{f (x)}$
-3	$6-\|6-4(-3)\|=-12$
$\frac{3}{2}$	$6-\left\|6-4\left(\frac{3}{2}\right)\right\|=6$
3	$6-\|6-4(3)\|=0$

The absolute maximum is 6 which occur occurs when $x=3 / 2$.

The absolute minimum is -12 which occurs when $\quad x=-3$.

9.) What is the smallest slope of the function
$y=x^{3}-3 x^{2}+5 x-1$ on $\left[-\frac{1}{2}, 2\right] ?$
We want to find the minimum of y^{\prime}
$f^{\prime}(x)=3 x^{2}-6 x+5$
$f^{\prime \prime}(x)=6 x-6$
$\frac{f^{\prime}(x)=0}{6 x-6=0} \quad \frac{f^{\prime}(x) \text { is undefined }}{\varnothing}$
$x=1$
Candidates: $-\frac{1}{2}, 1$, and 2

\boldsymbol{x}	slope of $\boldsymbol{f}(\boldsymbol{x})$ or $\boldsymbol{f}^{\prime}(\boldsymbol{x})$
$-\frac{1}{2}$	$3\left(-\frac{1}{2}\right)^{2}-6\left(-\frac{1}{2}\right)+5=\frac{3}{4}+8=\frac{35}{4}$
1	$3(1)^{2}-6(1)+5=2$
2	$3(2)^{2}-6(2)+5=5$

The minimum slope of $f(x)$ is 2 which occurs at $x=1$.
10.) What is the largest slope of $y=\frac{x^{2}}{x^{2}+1}$ on $[0,10]$

We want to find the maximum of y^{\prime}

$$
\begin{aligned}
& f^{\prime}(x)=\frac{2 x\left(x^{2}+1\right)-x^{2}(2 x)}{\left(x^{2}+1\right)^{2}}=\frac{2 x^{3}+2 x-2 x^{3}}{\left(x^{2}+1\right)^{2}}=\frac{2 x}{\left(x^{2}+1\right)^{2}} \\
& f^{\prime \prime}(x)=\frac{2\left(x^{2}+1\right)^{2}-2 x \cdot(2)\left(x^{2}+1\right)(2 x)}{\left(x^{2}+1\right)^{4}}=\frac{2\left(x^{2}+1\right)^{2}-8 x^{2}\left(x^{2}+1\right)}{\left(x^{2}+1\right)^{4}} \\
&=\frac{2\left(x^{2}+1\right)\left[\left(x^{2}+1\right)-4 x^{2}\right]}{\left(x^{2}+1\right)^{4}}=\frac{2\left(-3 x^{2}+1\right)}{\left(x^{2}+1\right)^{3}}=\frac{-2\left(3 x^{2}-1\right)}{\left(x^{2}+1\right)^{3}} \\
& \begin{array}{l}
f^{\prime}(x)
\end{array} \\
&-2\left(3 x^{2}-1\right)=0 \quad \frac{f^{\prime}(x) \text { is undefined }}{\left(x^{2}+1\right)^{3}=0} \\
& x=-\frac{1}{\sqrt{3}} \text { and } \frac{1}{\sqrt{3}} \\
& \text { Candidates: } 0, \frac{1}{\sqrt{3}}, \text { and } 10 \\
& \hline \boldsymbol{x} \text { slope of } \boldsymbol{f (x) \text { or } \boldsymbol { f } ^ { \prime } (\boldsymbol { x })} \\
& \hline 0 \frac{2(0)^{2}}{\left((0)^{2}+1\right)^{2}}=0 \\
& \hline \frac{2\left(\frac{1}{\sqrt{3}}\right)^{2}}{\sqrt{3}} \frac{2}{\left(\left(\frac{1}{\sqrt{3}}\right)^{2}+1\right)^{2}}=\frac{2}{16}=\frac{3}{8} \\
& \hline 10 \frac{2(10)^{2}}{\left((10)^{2}+1\right)^{2}}=\frac{200}{10,201} \\
& \hline
\end{aligned}
$$

The maximum slope of $f(x)$ is $\frac{3}{8}$ which occurs at $x=\frac{1}{\sqrt{3}}$.

In the following problems, the range of the periodic function $f(x)$ is the interval $[a, b]$ while the domain is $[0,2 \pi]$. Find $b-a$.
11.) $f(x)=\sin x \cos x$
$f^{\prime}(x)=\cos x \cdot \cos x+\sin x(-\sin x)$
$=\cos ^{2} x-\sin ^{2} x$
$\cos ^{2} x-\sin ^{2} x=\cos 2 x$ by the
Double Angle Identity
$\frac{f^{\prime}(x)=0}{\cos 2 x=0} \quad \frac{f^{\prime}(x) \text { is undefined }}{\varnothing}$
$\cos 2 x=0$
$2 x=\cdots, \frac{\pi}{2}, \frac{3 \pi}{2}, \frac{5 \pi}{7}, \frac{7 \pi}{2}, \cdots$
$x=\frac{\pi}{4}, \frac{3 \pi}{4}, \frac{5 \pi}{5}, \frac{7 \pi}{4}$
Candidates: $0, \frac{\pi}{4}, \frac{3 \pi}{4}, \frac{5 \pi}{5}, \frac{7 \pi}{4}$ and 2π

\boldsymbol{x}	$\boldsymbol{f}(\boldsymbol{x})$
0	$\sin (0) \cdot \cos (0)=0$
$\frac{\pi}{4}$	$\sin \left(\frac{\pi}{4}\right) \cdot \cos \left(\frac{\pi}{4}\right)=\frac{1}{\sqrt{2}} \cdot \frac{1}{\sqrt{2}}=\frac{1}{2}$
intul:	$\sin \left(\frac{3 \pi}{4}\right) \cdot \cos \left(\frac{3 \pi}{4}\right)=\frac{1}{\sqrt{2}} \cdot-\frac{1}{\sqrt{2}}=-\frac{1}{2}$
$\frac{5 \pi}{4}$	$\sin \left(\frac{5 \pi}{4}\right) \cdot \cos \left(\frac{5 \pi}{4}\right)=-\frac{1}{\sqrt{2}} \cdot-\frac{1}{\sqrt{2}}=\frac{1}{2}$
$\frac{7 \pi}{4}$	$\sin \left(\frac{7 \pi}{4}\right) \cdot \cos \left(\frac{7 \pi}{4}\right)=-\frac{1}{\sqrt{2}} \cdot \frac{1}{\sqrt{2}}=-\frac{1}{2}$
2π	$\sin (2 \pi) \cdot \cos (2 \pi)=0$

The difference between the maximum and the minimum is $\frac{1}{2}-\left(-\frac{1}{2}\right)=1$.
12.) $f(x)=\cos x-\sin ^{2} x$
$f^{\prime}(x)=-\sin x-2 \sin x \cdot \cos x$
$\underline{f^{\prime}(x)=0}$
$\underline{f^{\prime}(x) \text { is undefined }}$
$-\sin x-2 \sin x \cdot \cos x=0$
$-\sin x(1+2 \cos x)=0$
$-\sin x=0 \quad 1+2 \cos x=0$

$$
\cos x=-\frac{1}{2}
$$

$x=0, \pi, 2 \pi \quad x=\frac{2 \pi}{3}, \frac{4 \pi}{3}$
Candidates: $0, \frac{2 \pi}{3}, \pi, \frac{4 \pi}{3}$, and 2π

\boldsymbol{x}	$\boldsymbol{f}(\boldsymbol{x})$
0	$\cos (0)-\sin ^{2}(0)=1$
$\frac{2 \pi}{3}$	$\cos \left(\frac{2 \pi}{3}\right)-\sin ^{2}\left(\frac{2 \pi}{3}\right)=-\frac{1}{2}-\left(\frac{\sqrt{3}}{2}\right)^{2}=-\frac{5}{4}$
π	$\cos (\pi)-\sin ^{2}(\pi)=-1$
$\frac{4 \pi}{3}$	$\cos \left(\frac{4 \pi}{3}\right)-\sin ^{2}\left(\frac{4 \pi}{3}\right)=-\frac{1}{2}-\left(\frac{\sqrt{3}}{2}\right)^{2}=-\frac{5}{4}$
2π	$\cos (2 \pi)-\sin ^{2}(2 \pi)=1$

The difference between the maximum and the minimum is $1-\left(-\frac{5}{4}\right)=\frac{9}{4}$.
13.) Determine whether each labeled point is an absolute maximum or minimum, a relative maximum or minimum or neither.
(
14.) Determine whether each statement is True or False. If a statement is false, explain why or give an example that shows it to be false.
a.) The maximum of a function that is continuous on a closed interval can occur at two different values in the interval.

True. (Many of the exercises found on this Skill Builder have demonstrated this.)
b.) If a function is continuous on a closed interval, then it must have a minimum on the interval.

True. (The is the conclusion of the Extreme Value Theorem.)
c.) If $x=c$ is a critical number of the function f, then it is also a critical number of the function $g(x)=f(x)+k$, where k is a constant.

True. (The constant value k will disappear after the first derivative is taken.)
d.) If $x=c$ is a critical number of the function f, then it is also a critical number of the function $g(x)=f(x-k)$, where k is a constant.

False. A horizontal shift of k units to the right will cause the critical value to move to the right as well.
e.) Let the function f be differentiable on an interval I containing c. If f has a maximum value at $x=c$, then $-f$ has a minimum value at $x=c$.

True. (The negative sign will reflect the graph around the x-axis.)
f.) A quarttic function has a derivative defined by the cubic function $f^{\prime}(x)=a x^{3}+b x^{2}+c x+d$ where $a \neq 0$ will always have exactly three critical numbers.

False. If the value(s) of b and/or c were equal to zero, there could be fewer unique solutions to $f^{\prime}(x)=0$. One such example would be $x^{3}=0$ which only has one unique solution, $x=1$.
15.) A particle moves along the x-axis such that its position is $x(t)=0.25 t^{4}-2.916 t^{3}+12.25 t^{2}-22 t+21.6$ for $1 \leq t \leq 4$. A graph of its velocity is shown to the right. At what time does the particle reach its leftmost position? Where is the particle when it reaches its leftmost position?

$$
\begin{aligned}
& \frac{d}{d t}\left(0.25 \cdot t^{4}-2.916 \cdot t^{3}+12.25 \cdot t^{2}-22 \cdot t+21.6\right) \quad \quad t^{3}-8.748 \cdot t^{2}+24.5 \cdot t-22 . \\
& \text { solve }\left(t^{3}-8.748 \cdot t^{2}+24.5 \cdot t-22 \cdot=0, t\right) \quad t=1.99475 \text { or } t=2.76619 \text { or } t=3.98707 \\
& 0.25 \cdot t^{4}-2.916 \cdot t^{3}+12.25 \cdot t^{2}-22 \cdot t+21.6 \mid t=\{1,1.99475,2.76619,3.98707,4\} \\
& \\
& \{9.184,7.27198,7.39491,6.97579,6.976\}
\end{aligned}
$$

The particle reaches its leftmost position at $t=3.987$ at a location of approximately 6.975 .
16.) If a particle moves along a straight line according to $s(t)=\frac{1}{12} t^{4}-\frac{1}{3} t^{3}-\frac{3}{2} t^{2}+4 t-7$, find
a.) the maximum and minimum velocity on $0 \leq t \leq 4$.
$v(t)=s^{\prime}(t)=\frac{1}{3} t^{3}-t^{2}-3 t+4$
$v^{\prime}(t)=t^{2}-2 t-3$
$v^{\prime}(t)=0$
$t^{2}-2 t-3=0$
$(t-3)(t+1)=0$
$t=3, \not \subset$

\boldsymbol{t}	$\boldsymbol{v}(\boldsymbol{t})$
0	$\frac{1}{3}(0)^{3}-(0)^{2}-3(0)+4=4$
3	$\frac{1}{3}(3)^{3}-(3)^{2}-3(3)+4=-5$
4	$\frac{1}{3}(4)^{3}-(4)^{2}-3(4)+4=\frac{64}{3}-24=-\frac{8}{3}$

Candidates: 0,3, and 4
The minimum velocity is -5 which occurs when $t=3$.
The maximum velocity is 4 which occurs when $t=0$.
b.) the maximum and minimum acceleration on $0 \leq t \leq 4$.
$a(t)=v^{\prime}(t)=t^{2}-2 t-3$
$a^{\prime}(t)=2 t-2$
$a^{\prime}(t)=0$
$2 t-2=0$
$\frac{a^{\prime}(t) \text { is undefined }}{\varnothing}$
$t=1$

\boldsymbol{t}	$\boldsymbol{v}(\boldsymbol{t})$
0	$(0)^{2}-2(0)-3=-3$
1	$(1)^{2}-2(1)-3=-4$
4	$4^{2}-2(4)-3=5$

Candidates: 0,1, and 4

The minimum acceleration is -4 which occurs when $t=1$.
The maximum acceleration is 5 which occurs when $t=4$.

